18. Consider the region S between the curves y = 2³ and y = √32x. Which of the following represent the volume of the solid formed when S is rotated around the y-axis ? 1 = [² (₂² (a) T (26 - 32x) dx ** (32 S² (32r - r6) dr (c) T (e) π √₁² (₂³ dy 1024 = ² -1³) d₂ (i) None of these is correct (8) 1 - (b) π * (26 Jo (d) T S (f) T - 32x)dr [*(321-zº) dz dy 1024 - (1024-³) dy y (h) T -
18. Consider the region S between the curves y = 2³ and y = √32x. Which of the following represent the volume of the solid formed when S is rotated around the y-axis ? 1 = [² (₂² (a) T (26 - 32x) dx ** (32 S² (32r - r6) dr (c) T (e) π √₁² (₂³ dy 1024 = ² -1³) d₂ (i) None of these is correct (8) 1 - (b) π * (26 Jo (d) T S (f) T - 32x)dr [*(321-zº) dz dy 1024 - (1024-³) dy y (h) T -
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q18
![18. Consider the region S between the curves y = r³ and y = √32x. Which of the following
represent the volume of the solid formed when S is rotated around the y-axis ?
-32x) dx
) + S²
(а) п
(26
x [²
π (32r - r6)dr
(e) π √² (₂³ -
1
ㅠ
dy
² (1024-1³) dy
(i) None of these is correct
(g) T
1024
(b) T (x - 32x) dx
TS (20-
So
f) = √² (y² - 10/24) dy
(h) = ² (1024-1³) dy
ㅠ
-y
(d) T
(321-r)dr
(33](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0a03efe2-d931-4461-b3ce-5e694888ce83%2F41326ede-0675-48e0-b8a0-e829d9150cab%2Fbb58c5s_processed.jpeg&w=3840&q=75)
Transcribed Image Text:18. Consider the region S between the curves y = r³ and y = √32x. Which of the following
represent the volume of the solid formed when S is rotated around the y-axis ?
-32x) dx
) + S²
(а) п
(26
x [²
π (32r - r6)dr
(e) π √² (₂³ -
1
ㅠ
dy
² (1024-1³) dy
(i) None of these is correct
(g) T
1024
(b) T (x - 32x) dx
TS (20-
So
f) = √² (y² - 10/24) dy
(h) = ² (1024-1³) dy
ㅠ
-y
(d) T
(321-r)dr
(33
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)