340 Assignment 3 Solutions
pdf
keyboard_arrow_up
School
University of Texas *
*We aren’t endorsed by this school
Course
230
Subject
Statistics
Date
Apr 3, 2024
Type
Pages
7
Uploaded by sjobs3121
Assignment 3 Solutions
1)
Transition Matrix:
1 2 3
࠵? =
1
2
3
[
0.5
0.3
0.2
0.2
0.6
0.2
0.3
0.2
0.5
]
a)
We need to calculate ࠵?
3
.
࠵?
3
= [
0.3370
0.3850
0.2780
0.3100
0.4120
0.2780
0.3370
0.3580
0.3050
]
࠵?(࠵?
3
= 2|࠵?
0
= 2) = ࠵?
22
(3)
= 0.4120
b)
We need to calculate ࠵?
࠵?
, ࠵? = 1,2, . . . ,7
.
࠵?
31
(7)
= ∑
࠵?
31
(࠵?)
7
࠵?=1
= 0.3 + 0.34 + 0.337 + 0.3316 + 0.3286 + 0.3273 + 0.3268 = 2.2913
days
c)
We need to calculate steady state probability ࠵?
.
࠵?
100
= [
0.3265
0.3878
0.2857
0.3265
0.3878
0.2857
0.3265
0.3878
0.2857
] → ࠵? = [0.3265 0.3878 0.2857]
࠵?
1
= 0.3265 → 32.65%
of days are good fishing days.
d)
࠵?
31
= 0.3 + 0.5(1 + ࠵?
31
) + 0.2(1 + ࠵?
21
) → ࠵?
31
= 1 + 0.5࠵?
31
+ 0.2࠵?
21
࠵?
21
= 0.2 + 0.6(1 + ࠵?
21
) + 0.2(1 + ࠵?
31
) → ࠵?
21
= 1 + 0.6࠵?
21
+ 0.2࠵?
31
→ 0.4࠵?
21
= 1 + 0.2࠵?
31
→ ࠵?
21
= 2.5 + 0.5࠵?
31
࠵?
31
= 1 + 0.5࠵?
31
+ 0.2࠵?
21
= 1 + 0.5࠵?
31
+ 0.2(2.5 + 0.5࠵?
31
) = 1.5 + 0.6࠵?
31
→ 0.4࠵?
31
= 1.5 → ࠵?
31
= 3.75
days
e)
The question asks for mean sojourn time of state 3.
࠵?(࠵?
3
) =
1
1−࠵?
33
=
1
1−0.5 =
1
0.5
= 2
days
Medium
to
medium
over
3
days
raise
matrix
and
add
all
fifty
good
steady
store
and
good
first
purge
fun
bud
good
2
0
2)
Transition Matrix:
1 2 3 4
࠵? =
1
2
3
4
[
0
0.5
0.25
0.25
0.8
0
0.1
0.1
0.8
0.1
0
0.1
0.8
0.1
0.1
0
]
a)
࠵?(࠵?
2
= 1, ࠵?
1
= 2|࠵?
0
= 1) = ࠵?(࠵?
2
= 1|࠵?
1
= 2)࠵?(࠵?
1
= 2|࠵?
0
= 1) = ࠵?
12
࠵?
21
= 0.5 × 0.8 =
0.4
b)
We need to calculate ࠵?
࠵?
, ࠵? = 1,2, . . . ,5
.
࠵?
14
(5)
= ∑
࠵?
14
(࠵?)
5
࠵?=1
= 0.25 + 0.075 + 0.2125 + 0.1028 + 0.1905 = 0.8308
times
c)
We need to calculate steady state probability ࠵?
.
࠵?
100
= [
0.4444
0.2525
0.1515
0.1515
0.4444
0.2525
0.1515
0.1515
0.4444
0.2525
0.1515
0.1515
0.4444
0.2525
0.1515
0.1515
] → ࠵? = [0.4444 0.2525 0.1515 0.1515]
࠵?
1
= 0.4444
d)
࠵?
21
= 0.8 + 0.1(1 + ࠵?
31
) + 0.1(1 + ࠵?
41
) = 1 + 0.1࠵?
31
+ 0.1࠵?
41
࠵?
31
= 0.8 + 0.1(1 + ࠵?
21
) + 0.1(1 + ࠵?
41
) = 1 + 0.1࠵?
21
+ 0.1࠵?
41
࠵?
41
= 0.8 + 0.1(1 + ࠵?
21
0 + 0.1(1 + ࠵?
31
) = 1 + 0.1࠵?
21
+ 0.1࠵?
31
࠵?
31
= 1 + 0.1࠵?
21
+ 0.1࠵?
41
= 1 + 0.1࠵?
21
+ 0.1(1 + 0.1࠵?
21
+ 0.1࠵?
31
)
= 1.1 + 0.11࠵?
21
+ 0.01࠵?
31
→ 0.99࠵?
31
= 1.1 + 0.11࠵?
21
→ ࠵?
31
=
1.1 + 0.11࠵?
21
0.99
࠵?
41
= 1 + 0.1࠵?
21
+ 0.1࠵?
31
= 1 + 0.1࠵?
21
+ 0.1 (
1.1 + 0.11࠵?
21
0.99
) =
1.1 + 0.11࠵?
21
0.99
࠵?
21
= 1 + 0.1࠵?
31
+ 0.1࠵?
41
= 1 + 0.1 (
1.1 + 0.11࠵?
21
0.99
) + 0.1 (
1.1 + 0.11࠵?
21
0.99
)
=
1.21 + 0.022࠵?
21
0.99
→ 0.99࠵?
21
= 1.21 + 0.022࠵?
21
→ 0.968࠵?
21
= 1.21 → ࠵?
21
=
1.21
0.968
→ ࠵?
21
= 1.25 steps
Alternative solution:
࠵? = [
1
−0.1
−0.1
−0.1
1
−0.1
−0.1
−0.1
1
], ࠵? [
࠵?
21
࠵?
31
࠵?
41
] = [
1
1
1
] → [
࠵?
21
࠵?
31
࠵?
41
] = ࠵?
−1
[
1
1
1
]
[
࠵?
21
࠵?
31
࠵?
41
] = [
1.0227
0.1136
0.1136
0.1136
1.0227
0.1136
0.1136
0.1136
1.0227
] [
1
1
1
] = [
1.25
1.25
1.25
] → ࠵?
21
= 1.25 steps
raise
matrix
5
times
and
odd
all
i
74
steady
state
and
at
O
first
purge
for
flour
2
to
1
3)
Transition Matrix:
1 2 3 4
࠵? =
1
2
3
4
[
0.8
0.2
0
0
0.1
0.8
0.1
0
0.1
0
0.7
0.2
0.1
0
0
0.9
]
a)
(࠵?
3
= 4, ࠵?
2
= 3, ࠵?
1
= 2|࠵?
0
= 1) =
࠵?(࠵?
3
= 4|࠵?
2
= 3)࠵?(࠵?
2
= 3|࠵?
1
= 2)࠵?(࠵?
1
= 2|࠵?
0
= 1) = ࠵?
34
࠵?
23
࠵?
12
= 0.2 × 0.1 × 0.2 =
0.004
b)
We need to calculate steady state probability ࠵?
.
࠵?
100
= [
0.3333
0.3333
0.1111
0.2222
0.3333
0.3333
0.1111
0.2222
0.3333
0.3333
0.1111
0.2222
0.3333
0.3333
0.1111
0.2222
] → ࠵? = [0.3333 0.3333 0.1111 0.2222]
࠵?
1
= 0.3333
c)
࠵?
41
= 0.1 + 0.9(1 + ࠵?
41
) = 1 + 0.9࠵?
41
→ 0.1࠵?
41
= 1 → ࠵?
41
= 10
days
d)
The question asks for mean sojourn time of state 1.
࠵?(࠵?
1
) =
1
1−࠵?
11
=
1
1−0.8 =
1
0.2
= 5
days
1
72
2
23
3
7
4
40
21
o
11
0.21
first
purge
him
red
green
I 7
I
9.69
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
4)
Transition Matrix:
1 2 3 4
࠵? =
1
2
3
4
[
0.1
0.3
0.4
0.2
0.15
0.3
0.5
0.05
0.265
0.588
0.147
0
0.5
0.333
0.167
0
]
a)
We need to calculate steady state probability ࠵?
.
࠵?
100
= [
0.2
0.4
0.34
0.06
0.2
0.4
0.34
0.06
0.2
0.4
0.34
0.06
0.2
0.4
0.34
0.06
] → ࠵? = [0.2 0.4 0.34 0.06]
࠵?
4
= 0.06 → 1000 × 0.06 = 60 → It is expected that 60 wine bottles would be excellent.
b)
We need to calculate ࠵?
࠵?
, ࠵? = 1,2, . . . ,5
.
࠵?
33
(5)
= ∑
࠵?
33
(࠵?)
5
࠵?=1
= 0.1471 + 0.421626 + 0.308376 + 0.353262 + 0.334500 =
1.564864
years
࠵?
34
(5)
= ∑
࠵?
34
(࠵?)
5
࠵?=1
= 0 + 0.082353 + 0.047846 + 0.065115 + 0.057753 = 0.253067
years
࠵?
33
(5)
+ ࠵?
34
(5)
= 1.564864 + 0.253067 = 1.817931 ≈ 1.8179
years
c)
࠵?
34
= 0.265(1 + ࠵?
14
) + 0.588(1 + ࠵?
24
) + 0.147(1 + ࠵?
34
)
࠵?
34
= 1 + 0.265࠵?
14
+ 0.588࠵?
24
+ 0.147࠵?
34
−0.265࠵?
14
− 0.588࠵?
24
+ 0.853࠵?
34
= 1
࠵?
14
= 0.2 + 0.1(1 + ࠵?
14
) + 0.3(1 + ࠵?
24
) + 0.4(1 + ࠵?
34
)
࠵?
14
= 1 + 0.1࠵?
14
+ 0.3࠵?
24
+ 0.4࠵?
34
0.9࠵?
14
− 0.3࠵?
24
− 0.4࠵?
34
= 1
࠵?
24
= 0.05 + 0.15(1 + ࠵?
14
) + 0.3(1 + ࠵?
24
) + 0.5(1 + ࠵?
34
)
࠵?
24
= 1 + 0.15࠵?
14
+ 0.3࠵?
24
+ 0.5࠵?
34
−0.15࠵?
14
+ 0.7࠵?
24
− 0.5࠵?
34
= 1
࠵? = [
−0.265
−0.588
0.853
0.9
−0.3
−0.4
−0.15
0.7
−0.5
] , ࠵? [
࠵?
14
࠵?
24
࠵?
34
] = [
1
1
1
] → [
࠵?
14
࠵?
24
࠵?
34
] = ࠵?
−1
[
1
1
1
]
[
࠵?
14
࠵?
24
࠵?
34
] = [
5.0484
3.5586
5.7658
5.9877
3.0578
7.7687
6.8682
3.2134
7.1465
] [
1
1
1
] = [
14.377
16.819
17.233
] → ࠵?
34
= 17.233
years
steady
shik
41
1000
raise
to
power
1
5
add
all
prob
if
3
73
and
3
7
Art
purge
frm
J
Y
furn
WVU
d)
࠵?(࠵?
2
= 4|࠵?
1
= 1, ࠵?
0
= 3) = ࠵?
14
= 0.2
e)
We can use the results of part (c)
࠵?
44
= 0.5(1 + ࠵?
14
) + 0.333(1 + ࠵?
24
) + 0.167(1 + ࠵?
34
)
= 1 + 0.5 × 14.377 + 0.333 × 16.819 + 0.167 × 17.233 = 16.667
years
Alternative solution:
࠵?
44
=
1
࠵?
4
=
1
0.06
= 16.667
years
bad
7
exellent
1
s
4
Titellett
extent
4
Y
for
n
Nuu
5)
Current year land usage Corn Soybeans Other Fallow Sum Previous year usage Corn 3 1 0.5 0.2 4.7 Soybeans 1 1.2 0.3 0.2 2.7 Other 1 1 0.5 0.1 2.6 Fallow 1 0.8 0.2 0 2 We use conditional probability formula to calculate necessary probabilities.
࠵?(࠵?
࠵?
= ࠵?|࠵?
࠵?−1
= ࠵?) =
࠵?(࠵?
࠵?
= ࠵?, ࠵?
࠵?−1
= ࠵?)
࠵?(࠵?
࠵?−1
= ࠵?)
=
࠵?࠵?࠵?࠵?࠵?࠵? ࠵?࠵? ࠵?࠵?࠵?࠵?࠵?࠵?࠵?࠵?࠵? ࠵?࠵? ࠵? ࠵?࠵?࠵?࠵?࠵? ࠵?
࠵?࠵?࠵?࠵?࠵?࠵? ࠵?࠵? ࠵?࠵?࠵?࠵?࠵?࠵?࠵?࠵?࠵? ࠵?࠵? ࠵?
࠵?(࠵?
࠵?
= ࠵?|࠵?
࠵?−1
= ࠵?)
࠵?
Corn Soybeans Other Fallow ࠵?
Corn 0.638298
0.212766
0.106383
0.042553
Soybeans 0.37037
0.444444
0.111111
0.074074
Other 0.384615
0.384615
0.192308
0.038462
Fallow 0.5
0.4
0.1
0
States:
State
Description
1
Land Usage for Corn
2
Land Usage for Soybeans
3
Land Usage for Other
4
Land Usage for Follow
Transition Matrix:
1 2 3 4
࠵? =
1
2
3
4
[
0.638
0.213
0.106
0.043
0.370
0.444
0.111
0.074
0.385
0.385
0.192
0.038
0.5
0.4
0.1
0
]
a)
We need to calculate steady state probability ࠵?
.
࠵?
100
= [
0.5170
0.3154
0.1177
0.0498
0.5170
0.3154
0.1177
0.0498
0.5170
0.3154
0.1177
0.0498
0.5170
0.3154
0.1177
0.0498
] → ࠵? = [0.5170 0.3154 0.1177 0.0498]
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
The land is 12 million acres.
12 × 0.5170 = 6.2045
million acres are expected to be planted with corn.
12 × 0.3154 = 3.7848
million acres are expected to be planted with soybeans.
12 × 0.1177 = 1.4120
million acres are expected to be planted with other crops.
12 × 0.0498 = 0.5987
million acres are expected to be fallow.
b)
We need to calculate ࠵?
࠵?
, ࠵? = 1,2, . . . ,5
.
࠵?
21
(5)
= ∑
࠵?
21
(࠵?)
5
࠵?=1
= 0.3704 + 0.480788 + 0.507726 + 0.514669 + 0.516437 = 2.39
years
c)
Initial P:
࠵?
0
= [
6
12
4
12
1.5
12
0.5
12
]
12࠵?
0
࠵?
2
= 12 [
6
12
4
12
1.5
12
0.5
12
] [
0.5484
0.2883
0.1163
0.04701
0.4808
0.3487
0.1176
0.05296
0.4811
0.3421
0.1245
0.05225
0.5058
0.3226
0.1169
0.05475
]
12࠵?
0
࠵?
2
= 12[0.515689 0.316595 0.117745 0.049972]
12࠵?
0
࠵?
2
= [6.1883 3.7991 1.4129 0.5997]
Corn:
6.1883 acres
Soybeans: 3.7991 acres
Other crops: 1.4129 acres
Fallow: 0.5997 acres
d)
Initial P:
࠵?
0
= [
6
12
4
12
1.5
12
0.5
12
]
࠵?
0
࠵?
3
= [
6
12
4
12
1.5
12
0.5
12
] [
0.5251
0.3083
0.1174
0.0492
0.5077
0.33237
0.1178
0.0508
0.5078
0.3232
0.1184
0.0506
0.5146
0.3178
0.1176
0.0499
]
࠵?
0
࠵?
3
= [0.516693 0.315705 0.117678 0.049924]
The probability that will be fallow is 0.049924.
e)
࠵?
44
=
1
࠵?
4
=
1
0.0498
= 20.044
years
Related Documents
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage