Group1_Module5_Design_Concepts
docx
keyboard_arrow_up
School
Florida Institute of Technology *
*We aren’t endorsed by this school
Course
625
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
docx
Pages
2
Uploaded by mhansen1011
Group 1 – Module 5 Assignment
Background
:
Since our overall problem statement is to design a power system that ensures 6-sigma power reliability (0.999999 uptime), we need to use a simple single-family home that may have an average power usage for Florida. Here is a quick reference to start: "However, in 2018, a survey done by the U.S. Energy Information Administration showed that the
average home in the United States used 10,972 kWh for the entire year, which is 914 kWh each month. In Florida, the survey showed that the average home used 1,110 kWh." https://www.floridarealtymarketplace.com/blog/how
-
much
-
power
-
does
-
a
-
house
-
use.html
We would base out system on 1,100 kWh and need to design a system that will compensate for all normal appliances in the house: "If you divide 10,715 kWh by 365 (days in a year), you’ll get the average number of kilowatthours used per day, which is 29.36 kWh. If you multiply that by 1,000, you can find the energy consumption in watts that occur in 24 hours, or 29,360 watts. If you then divide that by 24,
you’ll find that the average household requires 1,223 watts of power." The immediate needs will have to overcome starting and normal operations: "To determine how many watts your generator requires to run all your home appliances, you’ll need to add up the watts they use to run continuously. Then, you’ll add the highest number of starting watts your appliances use. For example, consider that you have the following: An air conditioner that requires 1,100 running watts and 1,700 starting watts A refrigerator that requires 800 running watts and 2,400 starting watts A television that requires 500 running watts and 0 starting watts A tea kettle that requires 600 running watts and 0 starting watts You’ll add your running watts to get 1,100 + 800 + 500 + 600 = 3,000. You’ll then add the highest starting wattage of all your appliances to that total. In this case, the highest starting wattage is 2,400 from the refrigerator. So, you’ll need a generator with at least 5,400 starting watts and 3,000 running watts." https://www.forbes.com/home
-
improvement/home/how
-
many
-
watts
-
run
-
house/
Key
Acceptance Criteria
: Effectively provide emergency power to the home by: •
Switching over from grid power to backup power with minimal* delay. •
Providing equivalent power capacity as existing grid power supply. •
Providing days* of continuous power to the home. * Note: Needs to be more specific; remove ambiguity. Design Concepts
:
1.
Grid power (normal); Solar Panels; Large Battery backup for immediate transfer and to power
the house at night and during low power creation times (cloudy, rain, etc.).
2.
Grid power (normal); Solar Panels; Small wall mounted battery pack (15 mins or less for
emergency transfers); Wind Turbine for consistent power during low power creation times
(cloudy, rain, etc.). 3.
Grid power (normal); Solar Panels; Small wall mounted battery pack (15 mins or less for
emergency transfers); LP/Gas/Propane generator for consistent power during low power creation
times (cloudy, rain, etc.). Pugh Matrix
: 6-Sigma Power System for Residential Homes
Critical Quality
Weight (1 being least important, 10 being most important)
Grid Power; Solar Panels; Large battery bank
Grid Power; Solar Panels; Wall mounted battery pack; Wind turbine
Grid Power; Solar Panels; Wall mounted battery pack; Gas/LP generator
Concept 4
Concept 5
Concept 6
Cost (single family home)
10
-1
1
0
Installation
5
1
-1
-1
Reliability
8
1
0
0
Maintenance
4
0
1
0
ROI
6
-1
-1
1
Warranty
4
-1
0
1
Chosen Design
: There are some very distinct disadvantages to 1 and 2 (batteries are corrosive, heavy loads on foundation, Wind Turbine large, issues with neighbors, noisy, wind mitigation, etc.). Based on the above Pugh Matrix, the chosen design is concept number 3. Total "1s"
2
2
2
0
0
0
Total "0s"
1
2
3
0
0
0
Total "-1s"
3
2
1
0
0
0
Total -7
3
5
0
0
0
Summary Table
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
Need help with this question asap waited over 2 hours.
arrow_forward
4. For each of the situations in trie lapie welow, state the process by
which heat is transferred.
Getting burnt by touching a hot stove
Hot air rising, cooling and falling
Heat from a campfire when you are seated beside it
Ice cooling down your hand
Heat from the Sun warming your face
Boiling water by thrusting a red-hot piece of iron into it
A slice of bread placed undera red-hot electric grill to make toast
Heating a tin can of water using a Bunsen burner
arrow_forward
Problem Statement
=
You install a heat pump to heat a cottage during the winter using the outside air as the heat
source. You wish to maintain the interior temperature of the cottage at 22°C. A simplified
model of the heat loss through the walls indicates that heat will need to be supplied at a
rate of 0.14(Tinterior - Texterior) where Q is the rate at which heat must be supplied to
the cottage (in kW), Tinterior is the interior air temperature (in C), and Texterior is the exterior
air temperature (in C). You have a 1kW electric motor available to run the heat pump.
What is the coldest winter day when the heat pump will be able to keep up to the heating
demand?
Answer Table
Stage
Description
Your Answer
Correct
Answer *
Due Date
Grade
(%)
Part
Weight Attempt Action/Message.
Type
1
Coldest outdoor temperature (°C)
Nov 7, 2024 11:59 pm
0.0
1
1/5
Submit
* Correct answers will only show after due date has passed.
arrow_forward
Hello I have two pictures with some questions Id like to get answers to! Short and great explanations please thank you !
arrow_forward
University of Basrah - College of Engineering
Department of Mechanical Engineering
Subject: Power Plant I
Class: Fourth
Examiner: Dr. Ahmad A. M Alsahlani
Notes: Giving Sketches is compulsory wherever needed (Total Ma
Q1] Answer the following que
Exam: Final-Exam
Date: 11/09/2023
Time: 2 Hours
1- Explain how the Geothermal Energy can be utilized to generate electricity.
2- State the two classifications of energy sources and give three examples for each.
3- State three advantages and three disadvantages of using Gas Turbine Power Plant.
4- What are the reasons that lead to a deviation in the ideal gas turbine cycle?
5- Draw a block diagram for a regenerative Rankin Cycle using one open feed water
heater.
Q2]
A closed cycle gas-turbine power plant has a pressure ratio of 10. The air temperature is
35 C at the compressor inlet and 1127 C at the turbine inlet. The received energy at the Qi
combustion chamber is 794 kJ/kg. Assume the isentropic efficiency of the turbine is
95%. Determine…
arrow_forward
Use the following information to answer the next three questions
Mobile power plants, such as the one illustrated below, are used in remote locations.
Flowing water turns a turbine, which then moves a coil of wire through a magnetic
field.
Mobile Power Plant
Moving water
Stream
flowing downhill
Location I
Water turning turbine
Location II
-Spinning turbine
-Permanent magnet
Rotating wire coil
Split-ring
commutator
Metal brush
10. The components that connect to the spinning turbine in the illustration on the
previous page form a
O ammeter
O generator
O motor
1.
O transformer
Your reasoning:
MacBook Pro
arrow_forward
Please help with question 2 only.
arrow_forward
Please and explain step by step, instructions given at top
arrow_forward
Problem Statement
A heat engine draws 14 kW of heat from a reservoir at 900 K. The work it produces drives
a refrigerator which produces a refrigeration capacity of 12 kW. Both devices reject heat to
a reservoir at 300 K. What is the lowest possible temperature of the space cooled by the
refrigerator?
Answer Table
Correct
Stage
Description
Your Answer
Answer
*
1 Lowest temperature of cold space (K)
Due Date
Grade
(%)
Part
Weight Attempt Action/Message Type
Nov 7, 2024 11:59 pm 0.0
1
1/5
Submit
arrow_forward
Please show work , Don't copy.
arrow_forward
XYZ Company Ltd has consulted your firm Zig-Zag Energy over an intention to generate electricity in Ghana. Being the senior project engineer for Zig-Zag Energy, management has asked you to prepare a detailed technical report in respect to the project.
a) Discuss the major factors to take into consideration when consulting on such projects.
A tank containing air is stirred by a paddle wheel.
The work input to the paddle wheels is 2000KJ and the heat transferred to the surrounding from the tank is 6000KJ.
b) Determine the change in the internal energy of the system
There has been a sharp differences between the board of Blue-Blue Energy over which of the energy sources (hydroelectric power plant-HEP and Coal fired plant) is best for power generation. As an energy expert, you were confronted by the debating faction for your opinion. You…
arrow_forward
Need
arrow_forward
Hydro Tasmania has initiated the Battery of the Nation (BotN) strategic initiative to investigate and
map out future development opportunities for the State of Tasmania to make a bigger contribution
to a future National Electricity Market (NEM). The Tarraleah scheme redevelopment pre-feasibility
study was undertaken through this initiative, with funding support from ARENA under the
Advancing Renewables Program.
For this assignment problem you will be using your knowledge of hydro power to: (1) estimate
extended specifications for a new power station on the left bank of the Nive River opposite the existing
power station; and (2) to reverse engineer specifications for the Pelton turbines currently installed at
the Tarraleah power station.
The pre-feasibility design team established basic parameters of a new power station to comprise two
Francis turbines with a design flow of 20 m³/s (total 40 m³/s), a net head of 305 m and an installed
capacity of ~57 MW (total 113 MW).
The Tarraleah…
arrow_forward
The left side of this equation tells how much energy Q the cylinder gives to the water while it cools. The right
side of this equation tells how much energy Q the water and aluminum cup absorb from the cylinder to warm
up. Because it is the same energy, they are equal.
What is known in this equation?
Mcyl
411.7 g, malum
46.5 g, malum+water
= 175 g
Can you find: mwater =? g
Twater = Talum = 20°C (water and cup of room temperature)
90°C, T; = 35°C (hot cylinder and cool "cylinder+cup+water" temperatures)
Tcyl
kCal
Calum = 0.22, Cwater
1 (specific heat of water and aluminum, measured in units
kg-°C
What are we looking for is Ccul - How we find it? Plug all the numbers into the equation (1), Ccul will be one
unknown which you can calculate from the equation. Important, convert all the masses from grams to kilograms!
After
you find Ccyl, compare it to known value for the copper 0.093(our cylinder is made out of copper).
|Ceyl -0.093|
% :
· 100%
0.093
arrow_forward
A heat pump is an electrical device that heats a building by pumping heat in from the cold outside. In other words, it's the same as a refrigerator, but its purpose is to warm the hot reservoir rather than to cool the cold reservoir (even though it does both). Let us define the following standard symbols, all taken to be positive by convention:Th = temperature inside buildingTe = temperature outsideQh heat pumped into building in 1 day Qe = heat taken from outdoors in 1 dayW = electrical energy used by heat pump in 1 day
Explain why a heat pump is better than an electric furnace, which simply converts electrical work directly into heat. (Include some numerical estimates. )
arrow_forward
Solve show all steps and solution. Energy systems engineering
arrow_forward
Please explain
arrow_forward
Could you please explain where and what is tight side and also how to find 5-9
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Need help with this question asap waited over 2 hours.arrow_forward4. For each of the situations in trie lapie welow, state the process by which heat is transferred. Getting burnt by touching a hot stove Hot air rising, cooling and falling Heat from a campfire when you are seated beside it Ice cooling down your hand Heat from the Sun warming your face Boiling water by thrusting a red-hot piece of iron into it A slice of bread placed undera red-hot electric grill to make toast Heating a tin can of water using a Bunsen burnerarrow_forwardProblem Statement = You install a heat pump to heat a cottage during the winter using the outside air as the heat source. You wish to maintain the interior temperature of the cottage at 22°C. A simplified model of the heat loss through the walls indicates that heat will need to be supplied at a rate of 0.14(Tinterior - Texterior) where Q is the rate at which heat must be supplied to the cottage (in kW), Tinterior is the interior air temperature (in C), and Texterior is the exterior air temperature (in C). You have a 1kW electric motor available to run the heat pump. What is the coldest winter day when the heat pump will be able to keep up to the heating demand? Answer Table Stage Description Your Answer Correct Answer * Due Date Grade (%) Part Weight Attempt Action/Message. Type 1 Coldest outdoor temperature (°C) Nov 7, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.arrow_forward
- Hello I have two pictures with some questions Id like to get answers to! Short and great explanations please thank you !arrow_forwardUniversity of Basrah - College of Engineering Department of Mechanical Engineering Subject: Power Plant I Class: Fourth Examiner: Dr. Ahmad A. M Alsahlani Notes: Giving Sketches is compulsory wherever needed (Total Ma Q1] Answer the following que Exam: Final-Exam Date: 11/09/2023 Time: 2 Hours 1- Explain how the Geothermal Energy can be utilized to generate electricity. 2- State the two classifications of energy sources and give three examples for each. 3- State three advantages and three disadvantages of using Gas Turbine Power Plant. 4- What are the reasons that lead to a deviation in the ideal gas turbine cycle? 5- Draw a block diagram for a regenerative Rankin Cycle using one open feed water heater. Q2] A closed cycle gas-turbine power plant has a pressure ratio of 10. The air temperature is 35 C at the compressor inlet and 1127 C at the turbine inlet. The received energy at the Qi combustion chamber is 794 kJ/kg. Assume the isentropic efficiency of the turbine is 95%. Determine…arrow_forwardUse the following information to answer the next three questions Mobile power plants, such as the one illustrated below, are used in remote locations. Flowing water turns a turbine, which then moves a coil of wire through a magnetic field. Mobile Power Plant Moving water Stream flowing downhill Location I Water turning turbine Location II -Spinning turbine -Permanent magnet Rotating wire coil Split-ring commutator Metal brush 10. The components that connect to the spinning turbine in the illustration on the previous page form a O ammeter O generator O motor 1. O transformer Your reasoning: MacBook Proarrow_forward
- Please help with question 2 only.arrow_forwardPlease and explain step by step, instructions given at toparrow_forwardProblem Statement A heat engine draws 14 kW of heat from a reservoir at 900 K. The work it produces drives a refrigerator which produces a refrigeration capacity of 12 kW. Both devices reject heat to a reservoir at 300 K. What is the lowest possible temperature of the space cooled by the refrigerator? Answer Table Correct Stage Description Your Answer Answer * 1 Lowest temperature of cold space (K) Due Date Grade (%) Part Weight Attempt Action/Message Type Nov 7, 2024 11:59 pm 0.0 1 1/5 Submitarrow_forward
- Please show work , Don't copy.arrow_forwardXYZ Company Ltd has consulted your firm Zig-Zag Energy over an intention to generate electricity in Ghana. Being the senior project engineer for Zig-Zag Energy, management has asked you to prepare a detailed technical report in respect to the project. a) Discuss the major factors to take into consideration when consulting on such projects. A tank containing air is stirred by a paddle wheel. The work input to the paddle wheels is 2000KJ and the heat transferred to the surrounding from the tank is 6000KJ. b) Determine the change in the internal energy of the system There has been a sharp differences between the board of Blue-Blue Energy over which of the energy sources (hydroelectric power plant-HEP and Coal fired plant) is best for power generation. As an energy expert, you were confronted by the debating faction for your opinion. You…arrow_forwardNeedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY