Nichols E Vapor Pressure

xlsx

School

SUNY Canton *

*We aren’t endorsed by this school

Course

106

Subject

Mechanical Engineering

Date

Apr 3, 2024

Type

xlsx

Pages

7

Uploaded by ConstableSeaUrchinMaster981

Report
Determination of the Vapor Pressure and Heat of Vaporization of Water - PRE LAB 1. Define what is meant by dynamic equilibrium Dynamic equilibrium is when the rate of a forward reaction and the rate of a reverse are equal to each othe 2. From this lab, obviously vapor pressure is measured while the system is in dynamic equilibrium. What happens to the number of liquid molecules? Constant What happens to the number of vapor molecules? Constant What happens to the pressure of the system? Constant What happens to the temperature of the system? Constant What happens to any measurable property of the system? Constant 3. A typical liquid-gas vapor pressure curve can be best fit by an exponential curve called the Clausi Given the following vapor pressure data for benzene (C6H6), graphically determine the heat of vaporization Temp'C Temp (K) 1/T (K) Ln (VP) Must include a Grap 10 -11.5 261.5 0.003824 2.302585 Graph 1/K (x-axis) ver 40 7.6 280.6 0.003564 3.688879 determine the slope f 100 26.1 299.1 0.003343 4.60517 400 60.6 333.6 0.002998 5.991465 760 80.1 353.1 0.002832 6.633318 Slope of graph -4298.7 R Constant 8.3145 Heat of Vapor -35741.54 mmHg Vapor Pressure (torr) J·mol -1 J·mol -1
Note: The Data Sheet can be found on another sheet. See Tabs below er. As time passes for a vapor pressure system that is in dynam us-Clapeyron equation. n (ΔHvap) for this material. (Watch your labels!) ph Here rsus LnVP (y-axis) from a linear fit line equation
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Determination of the Vapor Pressure and Heat of Vaporization of water - Post Lab Data Sheet 75 70 65 60 55 50 Temperature (K) 348 343 338 333 328 323 Volume (ml) 7.1 7 6.9 6.2 6 5.3 Volume (L) 0.0071 0.007 0.0069 0.0062 0.006 0.0053 Total Pressure (mmHg) 741.125 741.125 741.125 741.125 741.125 741.125 Total pressure (atm) 0.975164 0.975164 0.975164 0.975164 0.975164 0.975164 Ideal gas constant R (L·atm/K·mol) 0.08206 0.08206 0.08206 0.08206 0.08206 0.08206 Moles of air at lowest temp 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 Air Pressure (atm) 0.752843 0.752627 0.752404 0.824966 0.839665 0.936074 Air Pressure (mmHg) 572.1609 571.9965 571.8273 626.9744 638.1457 711.4165 Vapor pressure (mmHg) 168.9641 169.1285 169.2977 114.1506 102.9793 29.70851 1/T (K) 0.002874 0.002915 0.002959 0.003003 0.003049 0.003096 ln VP 5.129686 5.130659 5.131659 4.737519 4.634528 3.391434 Theo. VP in mmHg (Ref. Table) 289.1 233.7 187.54 149.38 118.04 92.51 Percent error 41.55513 27.63007 9.727149 23.58375 12.759 67.88616 ln VP (theo) 5.666773 5.454038 5.233992 5.006493 4.771024 4.527317 Theoreticalpressure of air 452.025 507.425 553.585 591.745 623.085 648.615 Volume of air 5.481319 5.402564 5.32381 5.245055 5.1663 5.087546 Slope experimental -7065 Slope theoretical -5255 R constant 8.3145 Heat of Vaporization experimental 58741.94 Heat of Vaporization theoretical 43692.7 Percent error for Heat of Vaporization 34.44339 -273 -274.5098 Percent error for Absoute Zero 0.553042 Temperature ( o C) J·mol -1 ·K -1 J·mol -1 J·mol -1 Theoretical value of absolute zero ( o C) Experimental value of absolute zero ( o C) 0.0028 0.0029 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0 0 1 2 3 4 5 6 1; 5.25176176852289 2; 5.25258965029441 3; 5.25344081376662 4; 4.92863297660153 5; 4.84770448370876 6; 4.04280799428699 7; 3.71753625058432 f(x) = − 5931.4766642036 x + 22.5846841792274 Experimental Vapor Pressure vs. Temperat Temperature in K Vapor Pressure (mmHg)
0.0025 1.0025 2.0025 3.0025 4.0025 5.0025 6.0025 7.0025 0 1 2 3 4 5 6 1 2 3 4 5 6 5.6667726490223 5.45403824154481 5.23399215599148 5.00649339492892 4.77102355007474 4.52731674678323 4.2751371729 1.521 f(x) = − 0.443655303841137 x + 6.55348068541214 Theoretical Vapor Pressure vs. Temp (K 1/K (temp) LnVP (mmHg) 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 75 70 65 60 55 50 f(x) = − 8.33333333333333 x + 90 Volume Of Air (ml) vs. Temp (C) Temp (C) Volume oof Air (ml)
Hints 45 0 318 273 5.1 4.3 0.0051 0.0043 convert ml to L 741.125 741.125 from the barometer reading 0.975164 0.975164 Convert mmHg to atm 0.08206 0.08206 0.000187 0.000187 PV/RT 0.957725 0.975164 nRT/V 727.8707 741.125 Convert atm to mmHg 13.25434 0 Total Pressure - Air Pressure 0.003145 0.003663 Divide 1/Temp in Kelvin 2.584325 Err:502 Take natural log of Exp. VP 71.89 4.579 Look up Values in Handbook or Reference Table in BB 81.56303 100 |Exp-Theo|/Theo x 100 4.275137 1.521481 take natural log of Theo. VP 669.235 736.546 Total Pressure - theo VP 5.008791 4.3 Total vol x (air Pressure/Total Pressure) Graph LnVP (y-axis) versus 1/K (x-axis) for the Expermental data to get slope Graph LnVP (y-axis) versus 1/K (x-axis) for the Theoretical data to get slope |Exp-Theo|/Theo x 100 Graph Volume of Air (y-axis) versus Temp. in Celsius to see where line crosses x-axes |Exp-Theo|/Theo x 100 Convert °C to Kelvin Exp. ΔH vap= -slope x R Theo. ΔH vap= -slope x R 0.0036 0.0037 0.0038 ture (K)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
8.0025 9.0025 99578 148063367496 K) 7 8 9 45 0