CEE370L_LAB2_Vergara, Kailah

docx

School

University of Hawaii *

*We aren’t endorsed by this school

Course

370

Subject

Mechanical Engineering

Date

Dec 6, 2023

Type

docx

Pages

26

Uploaded by MinisterTank8797

Report
CEE 370 Mechanics of Materials Lab Stress-Strain Relationships for Concrete – Compression Kailah Vergara University of Hawaii at Manoa CEE 370L Mechanics of Materials 09/19/2023 0
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) EXECUTIVE SUMMARY In this laboratory experiment, we subjected two distinct concrete cylinder specimens to a compression test and then analyzed their individual responses using an extensometer. The analysis encompassed various aspects of their behavior, including the maximum average stress and average ultimate stress exhibited by both cylinders. Additionally, we investigated Poisson's effect ratio, the proportional limit, and the associated strain specifically for Cylinder 2. By utilizing the respective stress-strain curves and extracting data points at 10% and 40% strain levels from the experimental data, we were able to ascertain these behaviors. Once these values were computed, we proceeded to determine key material properties for each specimen, namely Young's modulus (stiffness) and density. This comprehensive analysis provided us with a deeper understanding of the characteristics of the specimens. The study revealed that Concrete Cylinder 1 and Concrete Cylinder 2 exhibited brittle characteristics under progressively increasing compressive loads. Among the two, Cylinder 2 displayed the highest density, measuring ( 137.84676 lb/ft^3), and was able to endure the greatest compressive load (Pult = 54428 Ibf). Additionally, it recorded the highest maximum average stress, reaching 3712.2188 psi. The average ultimate stress for both specimens was determined to be 4000.2358 psi . Furthermore, the calculated average Poisson’s ratio for both Concrete Cylinders was 0.19. Page
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) TABLE OF CONTENTS EXECUTIVE SUMMARY………………... ……………………………………………………………...i 1 INTRODUCTION .................................................................................................................. 1 1.1 B ACKGROUND .................................................................................................................... 1 1.2 R EASON FOR E XPERIMENT ................................................................................................ 1 1.3 T HEORY ............................................................................................................................. 1 1.4 O BJECTIVE ......................................................................................................................... 2 2 APPROACH ........................................................................................................................... 3 2.1 T EST S ETUP AND I NSTRUMENTATION ................................................................................ 3 2.2 T EST S PECIMENS ............................................................................................................... 3 2.3 T EST P ROCEDURE .............................................................................................................. 5 3 RESULTS ................................................................................................................................ 6 3.1 C ONCRETE C YLINDER 1 AND 2 ........................................................................................ 6 3.2 C ONCRETE C YLENDER 1 .................................................................................................. 7 3.3 C ONCRETE C YLENDER 2 .................................................................................................. 7 4 ANALYSIS .............................................................................................................................. 9 4.1 C ONCRETE C YLENDER 1 .................................................................................................. 9 4.2 C ONCRETE C YLENDER 2 .................................................................................................. 9 5 CONCLUSIONS/RECOMMENDATIONS ....................................................................... 10 6 REFERENCES ..................................................................................................................... 11 APPENDIX TABLE OF FIGURES Figure 1.3.1: Stress-strain diagram for a typical concrete structure in compression ....................... 2 Figure 2-.1: Compression test specimen 1 with 810 Material test System ...................................... 3 Figure 2-1.2: Humboldt 5080 System. .......................................................................................... 3 Figure 2-2.1: Compression test specimen 1 .................................................................................... 4 Figure 2-2.2: Compression test specimen 2 ................................................................................... 4 Figure 3-1.1: Stress vs Strain Curve ............................................................................................... 6 Figure 3-1.2: Magnified view of linear region of stress strain curve with Young’s modulus .................. 7 TABLE OF TABLES Table 2-2.1: Specimen 1 and 2 Worksheet Data .............................................................................. 4 Table 3-.1: Specimen 1 and 2 Objectives Data .............................................................................. 6 Table 3-.2: Specimen 1 and 2 Calculated Data ............................................................................... 6 Table 3-2.1: Specimen 1: Test 1 ...................................................................................................... 7 Table 3-3.1: Specimen 2: Test 1-3 .................................................................................................. 7 Table 3-3.2: Specimen 2: Axial and Transverse Strain ................................................................... 8 Page
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) Page
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 1. Introduction 1.1 Background This lab builds upon the tension test and focuses on the importance of using specific concrete specimens to ensure the reliability and durability of structures. By understanding the specifications for each concrete specimen, engineers can make informed choices to create enduring and sustainable solutions for the community. The critical properties of these specimens are established through a compression test. During this experiment, multiple specimens, including concrete specimens 1 and 2, were subjected to testing. The first cylinder underwent axial compression testing until failure, while the second cylinder was tested using circumferential and double-axial extensometers, spanning from a 10% load to a 40% load until failure. This comprehensive analysis allows for the determination of key parameters such as density, maximum average stress, average ultimate stress, Young's modulus, Poisson's ratio, and the proportional limit, thereby enhancing the engineer's design capabilities through an extensive evaluation process. 1.2 Reason for Experiment The compression test offers insights into a material's mechanical characteristics, assessing its strength when subjected to controlled compression until it fails. This examination aids in the selection of suitable materials for a given purpose, guarantees compliance with standards and specifications, and furnishes valuable observations on how the material behaves under varying compression conditions. 1.3 Theory The stress-strain curve in tension for concrete exhibits three distinct regions clearly discernible on its graphical representation. Starting from the origin and extending to point A, Page 1
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) stress and strain values follow a linear trend. The slope of this line corresponds to Young's Modulus, denoted as E0, which characterizes a material's stiffness or its propensity to undergo deformation. As the applied load surpasses the elastic limit, the concrete's behavior transitions into a nonlinear plastic phase. Beyond the elastic limit, the curve levels off, reaching its maximum compressive strength. Subsequent compression of the concrete leads to a reduction in load and, ultimately, results in structural failure. Figure 1.3.1: Stress-strain diagram for a typical concrete structure in compression 1.4 Objective The objective of this lab was to determine the density of each concrete, maximum average stress supported by each cylinder, average ultimate stress, E and ν for cylinder 2 based on the 10% to 40% readings, and the proportional limit for cylinder 2. Page 2
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 2 Approach 2.1 Test Setup and Instrumentation Test Specimen: Concrete Cylinder (Diameter: 4.0 - 4.15) Machinery Used: 810 Material test System and Humboldt 5080 Figure 2-1.1: Compression test specimen 1 with 810 Material test System. Figure 2-1.2: Humboldt 5080 System. 2.2 Test Specimens Table 2-2.1: Specimen 1 and 2 Worksheet Data Specimen 1 Specimen 2 Page 3
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) Diameter 1 (in) 4.14 4.05 Diameter 2 4.06 4.01 Diameter 3 (in) 4.15 4 Length (in) (DUAL) 4 4 Length (in) 8 8 Weight (lb) 8.2 8.1 Ultimate Load (Ibf) 49410 54428 Figure 2-2.1: Compression test specimen 1 Figure 2-2.2: Compression test specimen 2 Page 4
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 2.3 Test Procedure Concrete Cylinder 1, the initial specimen, was positioned within the testing framework of the 810 Material Test System Compression System. After activating the system, it underwent compressive force application, and the associated load, along with the specimen's contraction, was meticulously recorded until it ultimately failed. Subsequently, Concrete Cylinder 1 was extracted from the test frame. Following this, Concrete Cylinder 2 was situated within the 810 Material Test System test frame. Initially, compressive force was applied until it reached 10% of the ultimate load value, during which axial and diametric deformations were meticulously logged. The compressive force was then elevated to 40% of the ultimate load value, with corresponding axial and diametric deformations also recorded. This transition from 10% to 40% compressive force was replicated a total of three times, with all relevant measurements meticulously documented. Once this phase was completed, Concrete Cylinder 2 was removed from the 810 Material Test System and positioned within the Humboldt 5080 System test frame. Again, the system was activated, and compressive force was applied, with both the load and the specimen's contraction being recorded until the point of specimen failure was reached. Page 5
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 3 Results 3.1 Concrete Cylinder 1 and 2 Table 3-1.1: Specimen 1 and 2 Objectives Data Specimen 1 Specimen 2 Density (lb/ft^2) 133.07182 137.84676 Max AVG stress (psi) 3712.2188 4288.2529 AVG Ult. Stress (psi) 4000.2358 Youngs Modulus (ksi) 3479.4 AVG Poisson’s Ratio 0.19 Table 3-2.2: Specimen 1 and 2 Calculated Data Specimen 1 Specimen 2 Radius (in) 2.07 2.025 Avg Diam (in) 4.12 4.02 Area (in^2) 13.46 12.88 Volume(in^3) 107.6912829 103.059947 Figure 3-1.1: Stress vs Strain Curve Page 6
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) Figure 3-1.2: Magnified view of linear region of stress strain curve with Young’s modulus 3.2 Concrete Cylinder 1 Table 3-2.1: Specimen 1: Test 1 Specimen 1 Load (Plut) 10% 4941 40% 19764 3.3 Concrete Cylinder 2 Table 3-3.1: Specimen 2: Test 1-3 Specimen 2 Load (Plut) Axial Transverse 10% -0.0037 0.0306 40% -0.0053 0.037 10% -0.0041 0.03078 40% -0.0053 0.0311 10% -0.0041 0.0308 40% -0.0053 0.0371 Page 7
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) Table 3-3.2: Specimen 2: Axial and Transverse Strain Specimen 2 Load (Plut) Axial Delta Offset Axial - Offset Axial Strain Transverse Delta Offset Transverse - Offset Transverse Strain 10% -3.70E- 03 -3.57E-03 -1.29E- 04 -3.23E- 05 3.06E-02 3.04E- 02 2.03E-04 1.61E-05 40% -5.30E- 03 -3.57E-03 -1.73E- 03 -4.32E- 04 3.70E-02 3.04E- 02 6.60E-03 5.23E-04 10% -4.10E- 03 -3.57E-03 -5.29E- 04 -1.32E- 04 3.08E-02 3.04E- 02 3.83E-04 3.03E-05 40% -5.30E- 03 -3.57E-03 -1.73E- 03 -4.32E- 04 3.11E-02 3.04E- 02 7.03E-04 5.57E-05 10% -4.10E- 03 -3.57E-03 -5.29E- 04 -1.32E- 04 3.08E-02 3.04E- 02 4.03E-04 3.19E-05 40% -5.30E- 03 -3.57E-03 -1.73E- 03 -4.32E- 04 3.71E-02 3.04E- 02 6.70E-03 5.31E-04 Specimen 2 AXAIL STRAIN TRANSVERSE STRAIN 10% AVG -9.89E- 05 2.61E-05 40% AVG -4.32E- 04 3.70E-04 Page 8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 4 Analysis 4.1 Concrete Cylinder 1 Concrete Cylinder 1 endured a peak compressive force of 49410 Ibf before succumbing to brittle failure. Under increasing compressive load, the specimen experienced a sudden fracture rather than deformation or strain. To ascertain the specimen's maximum average stress, we divided the ultimate compressive load by its cross-sectional area, yielding a value of 3712.2188 Psi. The density of the specimen was determined using weight and volume measurements, resulting in a density 133.07182 lb/in^3. 4.2 Concrete Cylinder 2 Concrete Cylinder 2 endured a peak compressive force of 54428 Ibf before succumbing to brittle failure. Under increasing compressive load, the specimen experienced a sudden fracture rather than deformation or strain. To ascertain the specimen's maximum average stress, we divided the ultimate compressive load by its cross-sectional area, yielding a value of 4288.2529 Psi. The density of the specimen was determined using weight and volume measurements, resulting in a density 137.84676 lb/in^3. Page 9
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) 5 Conclusions In this laboratory experiment, we conducted compression tests on two distinct concrete cylinder samples. These tests yielded valuable data concerning the specimens' deformation, which was induced by the applied force. We conducted these tests using the 810-material test and Humboldt 5080 Compression systems. Although there is a dearth of stress and strain data indicating the specific point at which the specimens failed, both Concrete Cylinder 1 and Concrete Cylinder 2 displayed a brittle response. As they were subjected to an escalating compressive load, the specimens exhibited failure by abruptly fracturing, rather than undergoing deformation or straining. Concrete Cylinder 2 exhibited the greatest density among the specimens, measuring ( 137.84676 lb/ft^3), while Concrete Cylinder 1 followed closely behind with ( 133.07182 lb /in3). Concrete Cylinder 2 demonstrated the highest resistance to compressive load, withstanding a force of 54428 Ibf. Following closely behind, Concrete Cylinder 1 exhibited a compressive strength of 49410 Ibf. Concrete Cylinder 2 exhibited the highest maximum average stress, measuring 3712.2188 psi, while Concrete Cylinder 1 followed closely with a stress of 3712.2188 psi. The Poisson's ratio for Concrete Cylinder 2 was determined to be 0.19. This value reflects the specimen's remarkable ability to withstand deformation Page 10
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) when subjected to compressive loads, showcasing its high resistance to such forces. 6 References CEE370L - Mechanics of Solids Laboratory Stress-Strain Relationships for Various Materials Tension Test. (2023). Dept. of Civil & Environmental Engineering. Gere, James M. & Goodno, Barry J. (2018). Mechanics of Materials 9th Edition. CL Engineering. Page 11
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) Appendix A-1 Equations and Sample Calculations Stress : P/A (P = applied force, A = cross sectional area) Strain : δ/L (δ = deformation, L = 4” (starting length)) Density : w/v (w = weight, v = volume) Young’s Modulus (Modulus of elasticity) : The linear region of stress-strain curve was plotted and a linear fit applied. The slope of the equation outputted by excel was the modulus of elasticity. ACI Code Expression : ( w = concrete density, f c ’ = maximum average stress) Poisson’s Ratio : '/ Ɛ Ɛ ( ’ = lateral strain, = axial strain) Ɛ Ɛ Sample Calculations: Stress= P/A= (49410/1000)/((pi/4)*(4.12)^2) = 3.706 Ksi Strain= δ/ L= (-0.0055448506)/(4)= -0.002386213 Page 12
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) A-2 Raw Data Load Dual Extensometer (raw) Transverse Extensometer (raw) Unit s kip in in -0.091265872 -0.0055552507 0.096069641 -0.10524563 -0.0055497452 0.096073523 -0.11764872 -0.0055568758 0.096071094 -0.12837948 -0.0055516404 0.09607657 -0.1407053 -0.0055474825 0.096069098 -0.15314841 -0.0055614333 0.096074209 -0.1704096 -0.0055448506 0.096076004 -0.18453349 -0.00555587 0.096069127 -0.19911574 -0.0055595795 0.096062191 -0.21092603 -0.0055662943 0.096071549 -0.22417 -0.0055684294 0.096071139 -0.22559276 -0.0055645923 0.096065648 -0.22323458 -0.0055498038 0.096074969 -0.2204572 -0.0055620247 0.09606719 -0.22588226 -0.005569783 0.096069932 -0.23133287 -0.0055567878 0.096076295 -0.2448433 -0.0055603059 0.09607368 -0.26087645 -0.0055585825 0.096074998 -0.28004256 -0.0055600158 0.096062794 -0.29409939 -0.0055600791 0.096077837 -0.31175217 -0.0055650705 0.096068956 -0.32564116 -0.0055603846 0.096069477 -0.34627032 -0.0055685905 0.096067548 -0.36342704 -0.0055666203 0.096075781 -0.3861607 -0.0055750031 0.096073329 -0.40029198 -0.0055777556 0.096075073 -0.42222163 -0.0055844993 0.09606646 -0.4426634 -0.0055753831 0.096068405 -0.4639729 -0.0055789594 0.096077345 -0.48787639 -0.0055835885 0.096077256 -0.51176953 -0.0055780336 0.096077114 -0.53451991 -0.0055803424 0.096077785 -0.55718577 -0.0055968775 0.096073359 -0.58798611 -0.0055913315 0.096079141 Page 13
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -0.61345476 -0.0055944575 0.096073434 -0.64286476 -0.0055890409 0.096077688 -0.67389584 -0.005593271 0.096080124 -0.70439374 -0.005592234 0.096085943 -0.73527437 -0.0056067985 0.096081488 -0.76986492 -0.0056054406 0.096081845 -0.80636656 -0.0056124725 0.096073225 -0.84425211 -0.0056122467 0.096079752 -0.88147682 -0.005608296 0.096088372 -0.9205451 -0.0056131636 0.09607587 -0.96314216 -0.0056253737 0.096073583 -1.0052361 -0.0056238701 0.0960797 -1.0532029 -0.0056278757 0.096077763 -1.0982302 -0.0056270934 0.096078612 -1.1459846 -0.005640313 0.096079357 -1.1989751 -0.0056418162 0.096086852 -1.251012 -0.0056389016 0.096087955 -1.302704 -0.0056449398 0.096089609 -1.3597889 -0.0056583569 0.09608423 -1.417196 -0.0056606424 0.096086577 -1.4735069 -0.0056700883 0.096093878 -1.5384797 -0.0056667426 0.096088804 -1.6029301 -0.0056742537 0.096094392 -1.6714324 -0.0056795469 0.096098296 -1.7311648 -0.0056838132 0.096096382 -1.8094001 -0.0056950026 0.096097954 -1.8832262 -0.0057077101 0.096096314 -1.961265 -0.0056978422 0.096100718 -2.0329266 -0.0057061273 0.096106336 -2.1077774 -0.005708511 0.096094549 -2.1955612 -0.0057213255 0.096103899 -2.2792988 -0.0057330835 0.096108235 -2.3621135 -0.0057336781 0.096104078 -2.4452705 -0.0057514887 0.096104316 -2.5457721 -0.005755248 0.096102834 -2.632046 -0.0057684151 0.096108466 -2.7267237 -0.0057664448 0.096113965 -2.8285296 -0.005774294 0.096111923 -2.926506 -0.0057957545 0.096119493 -3.031666 -0.0057987263 0.096117549 -3.1399813 -0.0058083599 0.096127115 -3.2463932 -0.0058237487 0.096124277 Page 14
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -3.3490825 -0.0058096014 0.096124306 -3.4579749 -0.0058352402 0.096133329 -3.5902896 -0.0058395229 0.096124746 -3.7038577 -0.0058514625 0.096122317 -3.8188951 -0.0058553121 0.096122161 -3.9475327 -0.0058740098 0.096130185 -4.0644631 -0.0058825407 0.096131466 -4.1879764 -0.0058984784 0.096143633 -4.3208389 -0.0059051677 0.096150756 -4.4505415 -0.0059290207 0.096144274 -4.5861096 -0.0059292014 0.096149541 -4.7265096 -0.0059352661 0.096158355 -4.8609095 -0.005959841 0.096155867 -4.993917 -0.0059682876 0.096166544 -4.8813472 -0.0059680748 0.096158318 -4.8325548 -0.0059527773 0.09615583 -4.9993134 -0.0059687868 0.096158512 -4.8126197 -0.0059595276 0.096150659 -5.1072459 -0.0059817107 0.096163288 -5.3215313 -0.00600689 0.096167795 -5.5229454 -0.0060294522 0.096173003 -5.7137847 -0.0060303817 0.096177608 -5.901825 -0.006065073 0.096178956 -6.090487 -0.006072246 0.096177407 -6.2649717 -0.0060923649 0.09618976 -6.4478531 -0.0061046123 0.096193872 -6.6399012 -0.006123465 0.096203454 -6.8334036 -0.0061357445 0.09620066 -7.0280175 -0.0061656428 0.096218579 -7.2268925 -0.0061713927 0.096211255 -7.427783 -0.0061936593 0.096215591 -7.6225905 -0.0062134205 0.09622515 -7.8214011 -0.0062226802 0.096230276 -8.0245247 -0.0062372559 0.096238561 -8.244751 -0.0062589869 0.096252039 -8.4634104 -0.0062849782 0.096251413 -8.6623268 -0.0063092103 0.096258886 -8.8901939 -0.0063199406 0.096259199 -9.1263857 -0.006337984 0.096274659 -9.345685 -0.0063636736 0.09627746 -9.5581875 -0.0063873697 0.096295454 -9.8164759 -0.0064053726 0.096289247 Page 15
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -10.069158 -0.0064341379 0.096307226 -10.316349 -0.0064478819 0.096309863 -10.582748 -0.006475518 0.096324824 -10.838801 -0.0064976471 0.09633401 -11.104809 -0.0065291673 0.096343547 -11.363857 -0.0065615014 0.096356332 -11.620617 -0.0065961573 0.096366256 -11.913419 -0.0066144853 0.096371934 -12.196465 -0.0066477582 0.096383013 -12.488147 -0.0066652945 0.096397005 -12.792008 -0.0067015323 0.096408062 -13.108022 -0.0067292419 0.096416943 -13.418591 -0.0067521003 0.096425973 -13.713594 -0.0067815138 0.096435912 -14.041944 -0.0068031391 0.096454628 -14.37635 -0.0068461779 0.096464552 -14.692205 -0.0068701599 0.096476883 -15.01671 -0.0069211745 0.096495904 -15.368409 -0.0069439346 0.096512452 -15.708858 -0.0069774515 0.096527986 -16.08534 -0.0070119514 0.096539974 -16.421167 -0.0070531955 0.096565135 -16.780638 -0.0070834435 0.096590988 -17.175013 -0.0071315598 0.096607432 -17.583399 -0.0071710367 0.096616536 -17.998402 -0.007203666 0.096642397 -18.383839 -0.0072368099 0.096670203 -18.78154 -0.0072824783 0.096688807 -19.177069 -0.0073255869 0.096696913 -19.591255 -0.0073549789 0.096730359 -20.023649 -0.0073890504 0.096756652 -19.75362 -0.0074061705 0.096766271 -19.806 -0.0074324878 0.096780308 -19.514574 -0.0074179699 0.09679085 -18.686989 -0.007350849 0.096771017 -18.040762 -0.0073091807 0.096760988 -17.388727 -0.0072597526 0.096739605 -16.75701 -0.0072093131 0.096728578 -16.12837 -0.0071631493 0.096712753 -15.546237 -0.0071124462 0.096701846 -14.950274 -0.0070764478 0.096684501 -14.384302 -0.0070338305 0.096666731 Page 16
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -13.838973 -0.0069774869 0.09666083 -13.311502 -0.0069394959 0.096641265 -12.806674 -0.0068963771 0.096627943 -12.353043 -0.0068516354 0.096616559 -11.89872 -0.0068258932 0.096593872 -11.445903 -0.0067843138 0.096586198 -11.020988 -0.0067488644 0.09655942 -10.599079 -0.0067059551 0.096558772 -10.200525 -0.0066774287 0.096553169 -9.8336897 -0.0066365935 0.096538752 -9.4614925 -0.0066108345 0.096516274 -9.1203804 -0.0065602041 0.096506581 -8.8029222 -0.0065451162 0.096501611 -8.4657555 -0.0065094912 0.09648902 -8.1502733 -0.006472108 0.096478656 -7.8602705 -0.006446552 0.096465163 -7.571753 -0.0064172498 0.096449383 -7.2966738 -0.0063993535 0.096458204 -7.0370078 -0.0063738483 0.096438937 -6.80339 -0.0063485042 0.096428923 -6.5599337 -0.0063260966 0.096426561 -6.3164778 -0.0062994319 0.096422456 -6.0951362 -0.0062819952 0.096403189 -5.8677177 -0.0062554153 0.096398622 -5.6593413 -0.0062411707 0.09640041 -5.4897032 -0.0062235701 0.096391685 -5.6269107 -0.0062383786 0.096387632 -5.2730727 -0.0062034489 0.096382625 -5.0943041 -0.0061814999 0.096371785 -4.9377184 -0.0061689918 0.09636575 -4.9672666 -0.0061791474 0.096365131 -5.1424437 -0.0061908411 0.096372508 -4.7809258 -0.0061509525 0.096362002 -5.3870149 -0.0061869291 0.096370958 -5.7638063 -0.0062305164 0.096379183 -6.0966539 -0.0062611899 0.096382722 -6.3932829 -0.0062823119 0.096383572 -6.6721358 -0.0063056303 0.096387856 -6.9881978 -0.0063344459 0.096405491 -7.2990861 -0.0063691377 0.096409172 -7.5945415 -0.0063830167 0.096414089 -7.9078798 -0.0064197369 0.096415818 Page 17
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -8.2146339 -0.0064399131 0.096424423 -8.5225744 -0.0064697233 0.096428461 -8.8414116 -0.0065027406 0.096435234 -9.1285067 -0.0065225763 0.096449621 -9.4508677 -0.0065620192 0.096447311 -9.7804184 -0.0065929359 0.096463695 -10.115463 -0.0066168783 0.096476935 -10.453632 -0.0066578658 0.096481964 -10.805099 -0.0066839852 0.096489474 -11.165272 -0.0067152041 0.096495375 -11.508778 -0.006744219 0.096503772 -11.863832 -0.0067678364 0.096524596 -12.248354 -0.0068086721 0.096527711 -12.618418 -0.0068341712 0.09654519 -13.008482 -0.0068672434 0.096558176 -13.41218 -0.0068951054 0.096565917 -13.812988 -0.0069354312 0.096585631 -14.233513 -0.0069702696 0.096598566 -14.625216 -0.0070084287 0.096600026 -15.038273 -0.0070364978 0.096619211 -15.476296 -0.0070717866 0.09663824 -15.930491 -0.0071139415 0.096646115 -16.380688 -0.0071422649 0.096658319 -16.849144 -0.0071835495 0.096683867 -17.318302 -0.0072327117 0.096698016 -17.785496 -0.0072592865 0.096710451 -18.268486 -0.007298877 0.096722513 -18.754498 -0.0073417169 0.096744016 -19.269644 -0.0073796916 0.096768253 -19.785187 -0.00742405 0.096785448 -20.312941 -0.0074704615 0.0968161 -18.752462 -0.0073742275 0.096799232 -18.086168 -0.0073215179 0.096781135 -17.453794 -0.0072771064 0.096762545 -16.803793 -0.0072299065 0.096746221 -16.176035 -0.0071833399 0.096735805 -15.575554 -0.0071290247 0.096718051 -14.999756 -0.0070767575 0.096702293 -14.423226 -0.0070396112 0.096688591 -13.870681 -0.0069936481 0.096672148 -13.342734 -0.0069449418 0.096653871 -12.822156 -0.0069147735 0.096641451 Page 18
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -12.326622 -0.0068707988 0.096627012 -11.8641 -0.0068343543 0.096612841 -11.442558 -0.0067953854 0.096598387 -10.996543 -0.0067511727 0.096582711 -10.568041 -0.0067243055 0.096576609 -10.174111 -0.0066815517 0.096560247 -9.7817297 -0.0066504674 0.096545517 -9.4179573 -0.006628369 0.096535996 -9.0532398 -0.0065824641 0.096521802 -8.7038908 -0.0065313871 0.096507132 -8.3991709 -0.0065066726 0.096506253 -8.073844 -0.0064798971 0.09648326 -7.758224 -0.006443528 0.096479714 -7.4651957 -0.0064238175 0.096467577 -7.1881542 -0.0063943337 0.096466765 -6.9137688 -0.0063744751 0.096463405 -6.6551676 -0.0063387803 0.096437365 -6.4199896 -0.0063215038 0.09643928 -6.1866555 -0.0063037621 0.096433535 -5.9510541 -0.00627993 0.09641955 -5.7262149 -0.0062552528 0.096408226 -5.5039873 -0.0062306579 0.096411295 -5.2941184 -0.0062150178 0.096397035 -5.0967155 -0.0061981748 0.096383855 -4.9006529 -0.0061766393 0.096379124 -4.9364061 -0.0061806543 0.096383281 -5.1118841 -0.0061857896 0.096378855 -5.2322006 -0.0061958637 0.096375935 -5.6782174 -0.0062358109 0.096377 -5.9841866 -0.0062684235 0.096382372 -6.302712 -0.006283557 0.096397318 -6.6210709 -0.0063145682 0.096401677 -6.9348588 -0.0063399067 0.096407816 -7.2578068 -0.0063711819 0.096408196 -7.5708671 -0.0063955234 0.09642759 -7.8876128 -0.0064298315 0.096431285 -8.2039175 -0.006458025 0.096430741 -8.5003166 -0.0064937007 0.096437529 -8.8391943 -0.006510817 0.096447863 -9.1689959 -0.0065402603 0.096455246 -9.5092964 -0.0065954872 0.096464723 -9.8483238 -0.0066122683 0.096474171 Page 19
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -10.205125 -0.0066453754 0.096476644 -10.564853 -0.0066660414 0.096490756 -10.904894 -0.0067075654 0.096503355 -11.272828 -0.0067401482 0.096516319 -11.666002 -0.0067734825 0.096528962 -12.029578 -0.0068008159 0.096532799 -12.432233 -0.0068228943 0.0965451 -12.841772 -0.0068734381 0.096559316 -13.240222 -0.0069000805 0.096576281 -13.655843 -0.0069419416 0.096585467 -14.061072 -0.0069748475 0.096603133 -14.4734 -0.0070109437 0.096612059 -14.929976 -0.0070513133 0.096628167 -15.383804 -0.0070874966 0.096639834 -15.847892 -0.0071197203 0.096654683 -16.322466 -0.0071595302 0.096668407 -16.803402 -0.0072022369 0.096697517 -17.268047 -0.0072378581 0.096707128 -17.779438 -0.0072784037 0.096724734 -18.268213 -0.0073176352 0.09673883 -18.791342 -0.0073584146 0.096758649 -19.320688 -0.0073969071 0.096775122 -19.876047 -0.0074538221 0.096801914 -20.426117 -0.007486722 0.096826494 -19.713047 -0.0074571311 0.096829258 -20.251551 -0.0075002578 0.096837051 -20.998236 -0.0075560184 0.096866682 -21.56076 -0.0076029291 0.096872114 -22.117207 -0.0076448461 0.096889526 -22.719591 -0.0077041415 0.096918456 -23.348122 -0.0077607851 0.096953757 -23.940969 -0.0078041414 0.097005583 -24.530392 -0.0078635747 0.097037077 -25.090551 -0.0079181669 0.097072847 -25.673235 -0.0079882871 0.097110055 -26.235958 -0.0080404384 0.097160585 -26.78087 -0.0081059821 0.097205505 -27.372469 -0.0081682708 0.097262524 -27.922007 -0.0082395216 0.097299673 -28.488516 -0.0082986811 0.097354926 -29.034872 -0.008362283 0.097414933 -29.552631 -0.0084181335 0.097468212 Page 20
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -30.111326 -0.008498379 0.097531237 -30.663771 -0.0085621746 0.097596876 -31.175991 -0.0086235274 0.097657301 -31.756609 -0.0086901551 0.097722068 -32.291595 -0.0087644309 0.097795367 -32.801151 -0.0088349786 0.097870134 -33.354504 -0.0089060599 0.097953849 -33.839558 -0.0089654475 0.09804076 -34.318783 -0.009035659 0.098121315 -34.788837 -0.0090997089 0.098203085 -35.268818 -0.0091676461 0.098291606 -35.731953 -0.0092480434 0.098384805 -36.173729 -0.009310781 0.098482937 -36.597488 -0.0093675666 0.098570414 -36.990986 -0.0094282553 0.098675683 -37.43787 -0.0095085986 0.098782875 -37.894325 -0.0095835244 0.098903619 -38.321201 -0.009642832 0.09902171 -38.782246 -0.0097160097 0.099144638 -39.298038 -0.0098013021 0.099301949 -39.809883 -0.0098956265 0.099449903 -40.262787 -0.0099712647 0.099622943 -40.790836 -0.010071798 0.099810854 -41.337086 -0.010171724 0.10002151 -41.831104 -0.010274068 0.10025625 -42.366608 -0.01038644 0.10051819 -42.86721 -0.010496925 0.1007912 -43.362999 -0.010626786 0.10110191 -43.898594 -0.010745101 0.10143808 -44.366138 -0.010867124 0.10180905 -44.859577 -0.011010731 0.10221592 -45.362511 -0.011161263 0.10266904 -45.836475 -0.011310388 0.10318803 -46.264912 -0.011467678 0.10375313 -46.693188 -0.011619351 0.1043779 -47.162605 -0.01181896 0.10510325 -47.542587 -0.012007912 0.10595022 -47.915493 -0.012198268 0.10689681 -48.3218 -0.012425405 0.1079994 -48.65152 -0.012650942 0.10931939 -48.927704 -0.012911566 0.11086652 -49.195694 -0.013187931 0.11271407 Page 21
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
CEE 370L Mechanics of Materials Fall 2020 Laboratory (No.) -49.405983 -0.013528575 0.11505027 -49.553902 -0.013893946 0.1179196 -49.63588 -0.0143517 0.12176469 -49.570847 -0.014987202 0.12769213 -49.01321 -0.016108109 0.14102232 Page 22
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help