math-1004-tests-1-2-3-4-5-6-winter-2019

pdf

School

Carleton University *

*We aren’t endorsed by this school

Course

1902

Subject

Mathematics

Date

Jan 9, 2024

Type

pdf

Pages

13

Uploaded by ChiefMooseMaster855

Report
Studocu is not sponsored or endorsed by any college or university MATH 1004 - Tests 1, 2, 3, 4, 5, 6 Winter 2019 Calculus for Engineering or Physics (Carleton University) Studocu is not sponsored or endorsed by any college or university MATH 1004 - Tests 1, 2, 3, 4, 5, 6 Winter 2019 Calculus for Engineering or Physics (Carleton University) Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
1 School of Mathematics and Statistics Carleton University Math. 1004A, Winter 2019 TEST 1 SOLUTIONS Any wireless calculator permitted, 1 or more blank sheets permitted for roughs Print Name : Student Number: Tutorial Section (H1, H2, H3, H4): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [2 marks] Evaluate lim x →∞ parenleftbigg 2 x + 10 - 12 parenrightbigg . (a) 1, (b) 0, (c) 10 - 1 , (d) 10 - 12 Answer: (d) 2. [2 marks] Evaluate lim x →∞ x sin x. (a) 0, (b) 1, (c) 1, (d) The limit does not exist Answer: (d) 3. [2 marks] Evaluate lim x 0 sin(2 sin x ) sin x . (a) 1 / 2, (b) 2, (c) 0, (d) 1, (e) None of these or the limit does not exist. Answer: (b) 4. [2 marks] Which of the following functions is continuous at x = 0? (a) f ( x ) = 1 x , (b) f ( x ) = | x | , (c) f ( x ) = x, for x negationslash = 0 and f (0) = 1, (d) None of these. Answer: (b) 5. [2 marks] Evaluate lim x 0 1 cos( x 2 ) x 2 . (a) 1, (b) 1 / 2, (c) 0, (d) 1, Answer: (c) PART II: Show all work here and give details. No additional pages will be accepted 6. [5+5 marks] a) A function f has the property that f (0) = 1, f (1) = 1, f ( 1) = 2 and f (2) = 0. Evaluate the composition f ( f ( f (0))). Answer: f ( f ( f (0))) = f ( f (1)) = f ( 1) = 2 . b) Let f be defined by f ( x ) = braceleftbigg x, if x 0 , 1 , if x< 0 . Find lim x 0 f ( x ). Give details for your answer. Answer: The limit does not exist because the left and right limits at x = 0 are different. For example, lim x 0 - f ( x ) = 1 while lim x 0 + f ( x ) = 0. Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
2 . 7. [5+5 marks] Evaluate the following limits and give reasons. (An answer without details is insufficient for full marks) a) lim x 3 x 3 x 2 9 b) lim x 0 x | x | Answer: a) For x negationslash = 3, x 3 x 2 9 = x 3 ( x 3)( x + 3) = 1 x + 3 and so lim x 3 x 3 x 2 9 = lim x 3 1 x + 3 = 1 6 . b) For x > 0, | x | = x , by definition, so x | x | = 1 which implies that lim x 0 + x | x | = 1 as well. On the other hand, for x < 0, | x | = x , by definition, so x | x | = 1 and this implies that lim x 0 - x | x | = 1. Since the right and left hand limits at x = 0 are different the required limit does not exist. Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
1 School of Mathematics and Statistics Carleton University Math. 1004A, Winter 2019 TEST 2 SOLUTIONS Any wireless calculator permitted, 1 or more blank sheets permitted for roughs Print Name : Student Number: Tutorial Section (H1, H2, H3, H4): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [2 marks] Evaluate lim h 0 f ( h ) f (0) h where f ( x ) = x | x | , for all x . (a) 2, (b) 0, (c) 1, (d) The limit does not exist Answer: (b) 2. [2 marks] Let f, g be two differentiable functions such that f (0) = 2, g (1) = 0, g (1) = 1 and f (1) = 0. Evaluate ( f g ) (1) . (a) 2, (b) 0, (c) 2, (d) 1 Answer: (a) 3. [2 marks] Evaluate lim x 0 sin(Arcsin x ) Arcsin x . (a) π , (b) 0, (c) 1, (d) 1, (e) None of these or the limit does not exist. Answer: (c) 4. [2 marks] Which of the following functions is differentiable at x = 0? (a) f ( x ) = | x | , (b) f ( x ) = 1 /x , (c) f ( x ) = x 2 | x | , (d) f ( x ) = x | x | for x negationslash = 0 and f (0) = 1. Answer: (c) 5. [2 marks] Let x 2 + 3 xy 2 + sin( y ) = 0 describe a curve in the plane. Assuming that y can be written as a function of x calculate its derivative, y , at the point x = 0 , y = π . (a) π , (b) 1, (c) π 2 , (d) 3 π 2 , Answer: (d) PART II: Show all work here and give details. No additional pages will be accepted 6. [5+5 marks] a) Write down the formula for the derivative, F , of an inverse function f in terms of f and F . Answer: F ( x ) = 1 f ( F ( x )) . b) Use the result in (a), above, to show that if a differentiable function f with an inverse F has the property that f ( 1) = 1, f ( 1) = 1 / 3, f (1 / 3) = 2 and f (0) = 1. Evaluate the derivative F (1). Answer: Since f ( 1) = 1 it follows that F (1) = 1. On the other hand, F (1) = 1 f ( F (1)) = 1 f ( 1) = 3 . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
2 . 7. [5+5 marks] a) Let f ( x ) = Arctan(sin( x 2 )). Evaluate f ( π ). b) Find the derivative of the function g ( x ) = sin(Arcsin ( cos x )) at x = 0. Answer: a) f ( x ) = 1 1 + sin 2 ( x 2 ) 2 x cos( x 2 ) = f ( π ) = 2 π Answer: b) Since sin(Arcsin x ) = x for all x = g ( x ) = cos x . So, g ( x ) = 1 2 (cos x ) 1 / 2 sin x and g (0) = 0. Total: 30 marks Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
1 School of Mathematics and Statistics Carleton University Math. 1004 H, Winter 2019 TEST 3 No wireless calculators, 1 or more blank sheets permitted for roughs Print Name : Student Number: Tutorial Section (H1, H2, H3, H4): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [3 marks] A continuous function f has an antiderivative F such that F (0) = 1, F (1) = 2 and F (2) = - 1. Evaluate the definite integral integraldisplay 2 0 f ( x ) dx . (a) 0, (b) - 2, (c) 3, (d) 1. Answer: (b) 2. [3 marks] Find the most general antiderivative of x 3 x 2 , that is, evaluate integraldisplay x 3 x 2 dx . (a) 3 x 2 3 log 2 + C , (b) 3 x 2 1 2 log 3 + C , (c) 3 x 2 1 log 3 + C , (d) 3 x 2 2 log 3 + C , Answer: (d) 3. [3 marks] Find the antiderivative F of f ( x ) = sin 3 x cos x such that F (0) = - 1. (a) sin 4 x 4 - 1, (b) cos 4 x 4 - 5 4 , (c) sin 4 2 x 4 - 1, (d) sin 3 x 3 - 1. Answer: (a) 4. [3 marks] Evaluate integraldisplay xe 2 x dx . (a) xe 2 x 8 - e 2 x 4 + C , (b) xe 2 x 4 - e 2 x 2 + C , (c) xe 2 x 2 - e 2 x 4 + C , (d) xe 2 x 2 - e 2 x 2 + C , (e) None of these. Answer: (c) 5. [3 marks] Let f be a differentiable function with f (0) = 1 and integraldisplay f ( x ) dx = x 2 + C where C is a constant. Then f ( x ) = x 2 + 1. (a) TRUE, (b) FALSE, Answer: (a) PART II: Show all work here and give details. No additional pages will be accepted 6. [5+5 marks] a) Evaluate integraldisplay 1 0 xe x dx . b) Evaluate integraldisplay 3 x 2 sin xdx . Answer: (a) The Table Method gives, integraldisplay 1 0 xe x dx = ( - xe x - e x ) vextendsingle vextendsingle vextendsingle vextendsingle 1 0 = 1 - 2 e . Answer: (b) Once again the Table Method gives integraltext 3 x 2 sin xdx = - 3 x 2 cos x + 6 cos x + 6 x sin x Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2 . 7. [2+3 marks] a) Evaluate lim x 0 + d dx integraldisplay x 2 1 sin t t 3 / 2 dt using Leibniz’s Rule. b) Evaluate integraldisplay 2 0 t 1 + t 4 dt using any method. (Hint: Think arctangent) Answer: (a) Using Leibniz’s Rule, we get, for x > 0, d dx integraldisplay x 2 1 sin t t 3 / 2 dt = sin x 2 x 3 2 x - 0 = 2 sin x 2 x 2 . Since, lim x 0 sin x 2 x 2 = 1, it follows that lim x 0 + d dx integraldisplay x 2 1 sin t t 3 / 2 dt = 2 lim x 0 sin x 2 x 2 = 2 . Answer: (b) Let u = t 2 , du = 2 tdt or tdt = du 2 . For t = 0, u = 0 while for t = 2, u = 4. Hence, integraldisplay 2 0 t 1 + t 4 dt = 1 2 integraldisplay 4 0 du 1 + u 2 = 1 2 Arctan u vextendsingle vextendsingle vextendsingle vextendsingle 4 0 = 1 2 Arctan 4 . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
1 School of Mathematics and Statistics Carleton University Math. 1004 H, Winter 2019 TEST 4 Any wireless calculator permitted, 1 or more blank sheets permitted for roughs Print Name : Student Number: Tutorial Section (H1, H2, H3, H4): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [3 marks] A continuous function f has an antiderivative F such that F (0) = 1, F (1) = 2 and F (2) = - 1. Evaluate the definite integral integraldisplay 2 0 f ( x ) dx . (a) 0, (b) - 2, (c) 3, (d) 1. Answer: (b) 2. [3 marks] Find the most general antiderivative of x 3 x 2 , that is, evaluate integraldisplay x 3 x 2 dx . (a) 3 x 2 3 log 2 + C , (b) 3 x 2 1 2 log 3 + C , (c) 3 x 2 1 log 3 + C , (d) 3 x 2 2 log 3 + C , Answer: (d) 3. [3 marks] Find the antiderivative F of f ( x ) = sin 3 x cos x such that F (0) = - 1. (a) sin 4 x 4 - 1, (b) cos 4 x 4 - 5 4 , (c) sin 4 2 x 4 - 1, (d) sin 3 x 3 - 1. Answer: (a) 4. [3 marks] Evaluate integraldisplay xe 2 x dx . (a) xe 2 x 8 - e 2 x 4 + C , (b) xe 2 x 4 - e 2 x 2 + C , (c) xe 2 x 2 - e 2 x 4 + C , (d) xe 2 x 2 - e 2 x 2 + C , (e) None of these. Answer: (c) 5. [3 marks] Let f be a differentiable function with f (0) = 1 and integraldisplay f ( x ) dx = x 2 + C where C is a constant. Then f ( x ) = x 2 + 1. (a) TRUE, (b) FALSE, Answer: (a) PART II Show all work here and give details. Answers only are insufficient for full credit. No additional pages will be accepted 6. [5+5 marks] a) Evaluate integraldisplay 1 0 xe x dx . Answer: Use Table method to get integraldisplay xe x dx = - xe x - e x so that integraldisplay 1 0 xe x dx = - xe x - e x vextendsingle vextendsingle vextendsingle vextendsingle 1 0 = 1 - 2 e b) Evaluate integraldisplay 3 x 2 sin xdx . Answer: Table method of integrating by parts is easiest! Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
2 This gives integraldisplay 3 x 2 sin xdx = - 3 x 2 cos x + 6 x sin x + 6 cos x + C 7. [2+3 marks] a) Evaluate lim x 0 + d dx integraldisplay x 2 1 sin t t 3 / 2 dt using Leibniz’s Rule. Answer: Let f ( t ) = sin t t 3 / 2 . Then, by Leibniz’s rule, we get d dx integraldisplay x 2 1 sin t t 3 / 2 dt = d dx integraldisplay x 2 1 f ( t ) dt = f ( x 2 ) · (2 x ) - f (1) · 0 = 2 x sin x 2 x 3 = 2 sin x 2 x 2 , since x> 0. So, by L’Hospital’s Rule, lim x 0 + 2 sin x 2 x 2 = 2 · 1 = 2 . b) Evaluate integraldisplay 2 0 t 1 + t 4 dt using any method. (Hint: Think arctangent) Answer: Let u = t 2 . Then du = 2 tdt or tdt = du 2 . Hence, integraldisplay t 1 + t 4 dt = 1 2 integraldisplay du 1 + u 2 = 1 2 Arctan u = 1 2 Arctan ( t 2 ) . Therefore, integraldisplay 2 0 t 1 + t 4 dt = 1 2 Arctan( t 2 ) vextendsingle vextendsingle vextendsingle vextendsingle 2 t =0 = 1 2 Arctan(4) . OR Let u = t 2 . Then du = 2 tdt or tdt = du 2 . When t = 0, u = 0 while if t = 2 then u = 4. Hence, integraldisplay 2 0 t 1 + t 4 dt = 1 2 integraldisplay 4 0 du 1 + u 2 dt = 1 2 Arctan( u ) vextendsingle vextendsingle vextendsingle vextendsingle 4 u =0 = 1 2 Arctan(4) . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
1 School of Mathematics and Statistics Carleton University Math. 1004 H, Winter 2019 TEST 5 SOLUTIONS Any wireless calculator permitted, 1 or more blank sheets permitted for roughs Print Name : Student Number: Tutorial Section (H1, H2, H3, H4): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [3 marks] Simplify using long division: 3 x 2 + 2 x + 1 (a) 3 x + 2, (b) 3 x - 1 - 5 x + 1 , (c) 3 x - 3 + 5 x + 1 , (d) 3 x - 1 + 5 x + 1 . Answer: (c) 2. [3 marks] Evaluate integraldisplay 3 sin 2 x cos x dx (a) sin 3 x + C , (b) sin 3 x 3 + C , (c) cos 3 x + C , (d) cos 3 x 3 + C , Answer: (a) 3. [3 marks] Evaluate integraldisplay sec 5 x tan x dx (a) sec 6 x 6 + C - 6, (b) tan 3 x 3 + C , (c) sec 5 x 5 - 1 + C , (d) sec 3 x tan 2 x 3 + C . Answer: (c) 4. [3 marks] Find the form of the partial fraction decomposition of x 2 + 2 x 2 ( x 2 - 1)( x 2 + 1) : (a) A x 2 + B x + 1 + C x - 1 + Dx + E x 2 + 1 , (b) A x + B x + 1 + C x - 1 + Dx + E x 2 + 1 , (c) A x + B x 2 + C x + 1 + D x - 1 + E x 2 + 1 (d) A x + B x 2 + C x + 1 + D x - 1 + Ex + F x 2 + 1 , (e) None of these. Answer: (d) 5. [3 marks] Let F ( x ) = integraldisplay tan 4 x sec 2 x dx with F ( π/ 4) = 3. Then F ( x ) = tan 5 x 5 + 3 (a) TRUE, (b) FALSE, Answer: (b) PART II Show all work here and give details. Answers only are insufficient for full credit. No additional pages will be accepted 6. [4+3 marks] a) Evaluate I = integraldisplay sin 3 x cos 2 x dx Answer: There are many ways of doing this, for example: sin 3 x cos 2 x = sin 2 x cos 2 x sin x = (1 - cos 2 x ) cos 2 x sin x which gives I = integraldisplay (cos 2 x - cos 4 x ) sin x dx = - integraldisplay ( u 2 - u 4 ) du = - cos 3 x 3 + cos 5 x 5 + C Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
2 b) Evaluate integraldisplay x + 1 ( x + 2)( x + 3) dx using the method of partial fractions. Answer: x + 1 ( x + 2)( x + 3) = 2 x + 3 - 1 x + 2 so integraldisplay x + 1 ( x + 2)( x + 3) dx = integraldisplay 2 x + 3 dx - integraldisplay 1 x + 2 dx = 2 ln | x +3 |- ln | x +2 | + C . 7. [3 + 3 + 2 marks] Convert and integrate the rational function x 4 + 1 ( x + 2)( x + 1) using partial fractions as follows: a) Use long division to find the remainder b) Find the partial fraction decomposition of the remainder c) Integrate the result in (b). ( NOTE : An answer alone is insufficient and worth only 1 mark) Answer: a) Long division gives x 4 + 1 ( x + 2)( x + 1) = x 2 - 3 x + 7 - 15 x + 13 ( x + 2)( x + 1) . b) 15 x + 13 ( x + 2)( x + 1) = - 2 x + 1 + 17 x + 2 c) integraldisplay x 4 + 1 ( x + 2)( x + 1) dx = integraldisplay ( x 2 - 3 x + 7) dx + integraldisplay 2 x + 1 dx - integraldisplay 17 x + 2 dx = x 3 3 - 3 x 2 2 + 7 x + 2 ln | x + 1 | - 17 ln | x + 2 | . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
1 School of Mathematics and Statistics Carleton University Math. 1004H, Winter 2019 TEST 6 Any calculator permitted, no wireless devices. Blank sheets permitted for roughs (don’t hand in) Print Name : Student Number: Tutorial Section (H1, H4, ...): PART I: Multiple Choice Questions (Choose and CIRCLE only ONE answer - No part marks here.) 1. [3 marks] Evaluate integraldisplay 0 2 xe - 2 x dx . (a) 2, (b) 1, (c) 1 4 , (d) 1 2 Answer: (d) 2. [3 marks] Evaluate integraldisplay 1 0 x ln x dx . (a) - 1 4 , (b) 1 2 , (c) 0, (d) 2 3 Answer: (a) 3. [3 marks] Which one of the following integrals represents the area of the region enclosed by the two curves y = x 2 and y = x ? (a) integraldisplay 1 0 ( x - x 2 ) 2 dx , (b) integraldisplay 1 0 ( x - x 2 ) dx , (c) integraldisplay 1 0 ( x 2 - x ) dx , (d) integraldisplay 2 0 ( x - x 2 ) dx Answer: (b) 4. [3 marks] Find the area of the region enclosed by the curves y = x 2 and y = 1. (a) 8, (b) 1 4 , (c) 4 3 , (d) 2 3 , Answer: (c) 5. [3 marks] Find an expression for the volume of the solid of revolution obtained by rotating the region in the first quadrant enclosed by the curves y = x , x = 1 and y = 0 about the x -axis. (a) integraldisplay 1 0 πx dx , (b) integraldisplay 1 0 π x dx , (c) integraldisplay 1 0 πx 2 dx , (d) integraldisplay 1 0 2 πx dx , Answer: (a) PART II: Show all work here and give details. No additional pages will be accepted 6. [5+5 marks] a) Evaluate the integral integraldisplay 1 0 x - 1 / 2 1 + x 1 / 2 dx . Answer: Let u = 1 + x 1 / 2 . Then 2 du = x - 1 / 2 dx . When x = 0, u = 1 while if x = 1, then u = 2. So, integraldisplay 1 0 x - 1 / 2 1 + x 1 / 2 dx = integraldisplay 2 1 2 du u = 2 ln 2 . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2 b) Find an expression for the solid of revolution obtained by rotating the region in the first quadrant bounded by the curves y = 2 x 2 , y = 2 and x = 0, about the y -axis. DO NOT EVALUATE the constants nor the integral. Answer: The two curves intersect when x = 1 and y = 2. Using vertical slices we get r out = x + dx , r in = x and height= 2 - 2 x 2 . When this slice is rotated about the y -axis we get its volume as π ( r 2 out - r 2 in ) dx = 2 π x (2 - 2 x 2 ) dx . Hence the required volume is integraldisplay 1 0 2 π x (2 - 2 x 2 ) dx. Alternately, using horizontal slices r out = radicalbig y/ 2, r in = 0 and height= dy . When this slice is rotated about the y -axis we get its volume as π ( r 2 out - r 2 in ) dy = π ( radicalbig y/ 2) 2 dy . Hence the required volume is also equal to integraldisplay 2 0 π 2 y dy. 7. [5 marks] Evaluate the improper integral integraldisplay 0 - 1 | x | - 1 / 2 dx . (Hint: Remove the absolute value and evaluate the integral using the definition of an improper integral) Answer: Since x < 0, | x | = - x and so, using the substitution - x = t , dx = - dt , and the definition of the improper integral we find that integraldisplay 0 - 1 | x | - 1 / 2 dx = integraldisplay 0 - 1 ( - x ) - 1 / 2 dx = lim ε 0 - integraldisplay ε - 1 ( - x ) - 1 / 2 dx = lim ε 0 - - integraldisplay - ε 1 t - 1 / 2 dt = lim ε 0 - integraldisplay 1 - ε t - 1 / 2 dt = lim ε 0 - 2 t 1 / 2 vextendsingle vextendsingle vextendsingle vextendsingle 1 - ε = 2 . Downloaded by Ammar Alturaihi (ammar.alturaihi@gmail.com) lOMoARcPSD|31437612