1.4
docx
keyboard_arrow_up
School
University of California, Berkeley *
*We aren’t endorsed by this school
Course
N54
Subject
Mathematics
Date
Apr 3, 2024
Type
docx
Pages
5
Uploaded by BailiffBookElephant2276
Question and Solution Template
Learning Attribute(s) Included in Question
: 1.4.10 Find the inverse of a
matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3x3 or greater).
Calculator Active?
Yes
Question
:
Solve the below system using matrix inverse methods. x
+
y
+
z
=
5
−
x
+
3
y
+
2
z
=
2
2
x
+
2
y
+
z
=
1
A)
(
x , y , z
)
=
(
1,2,3
)
B)
(
x , y , z
)
=
(
−
1
,
−
5,9
)
C)
(
x , y , z
)
=
(
1,5,9
)
D)
(
x , y , z
)=(
1
,
−
5,9
)
Correct Answer: D
Equation Upload
(Please write the text of the question along with the LaTeX Code):
Solve the below system using matrix inverse methods. $x+y+z=5$
$-x+3y+2z=2$
$2x+2y+z =1$
A) $(x,y,z)=(1,2,3)$
B) $(x,y,z)=(-1,-5,9$)
C) $(x,y,z)=(1,5,9)$
D) $(x,y,z)=(1,-5,9$)
On a scale of 1-10, how difficult would you estimate your question to be (1=easy, 10=extremely difficult):
10 i
Solution
:
Step 1
: The coefficient matrix of the system is: A
=
[
1
1
1
−
1
3
2
2
2
1
]
Find the inverse of A
using your graphing calculator.
A
−
1
=
1
4
[
1
−
1
1
−
5
1
3
8
0
−
4
]
Equation Upload (Please write the text of the question along with the LaTeX Code):
\textbf{Step 1}:
The coefficient matrix of the system is: $A= \begin{bmatrix}
1 & 1 & 1\\ -1 & 3 & 2\\ 2 & 2 & 1
\end{bmatrix}$
Find the inverse of $A$ using your graphing calculator.
$$ A^{-1}= \frac{1}{4}
\begin{bmatrix}
-1 & 0 & 1\\ -5 & 1 & 3\\ 8 & 0 & -4
\end{bmatrix}$$
Step 2
: Solve: X
=
A
−
1
B
[
x
y
z
]
=
1
4
[
1
−
1
1
−
5
1
3
8
0
−
4
][
5
2
1
]
¿
1
4
[
5
−
2
+
1
−
25
+
2
+
3
40
+
0
−
4
]
¿
[
1
−
5
9
]
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
This shows x
=
1
, y
=−
5
,
and z
=
9
.
Equation Upload (Please write the text of the question along with the LaTeX Code):
\textbf{Step 2}: Solve: $X=A^{-1}B$
$$ \begin{bmatrix}
x \\ y \\ y
\end{bmatrix}= \frac{1}{4}
\begin{bmatrix}
1 & -1 & 1\\ -5 & 1 & 3\\ 8 & 0 & -4
\end{bmatrix}
\begin{bmatrix}
5 \\ 2 \\ 1
\end{bmatrix}$$
$$= \frac{1}{4}\begin{bmatrix}
5-2+1 \\ -25+2+3 \\ 40+0-4
\end{bmatrix}$$
$$=\begin{bmatrix}
1 \\ -5 \\ 9
\end{bmatrix}$$
This shows $x=1, $y=-5$, and $z=9$.