Lab9temp_152_23C
pdf
keyboard_arrow_up
School
Texas A&M University *
*We aren’t endorsed by this school
Course
152
Subject
Mathematics
Date
Feb 20, 2024
Type
Pages
6
Uploaded by MasterFireHeron35
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
1/6
Limit is : 5/9
The series converges.
In [1]:
import
sympy as
sp
from
sympy.plotting import
(
plot
,
plot_parametric
)
import
matplotlib.pyplot as
plt
import
numpy as
np
In [2]:
x
, n =
sp
.
symbols
(
'x , n'
, real =
True
, positive =
True
)
eq =
((
-
1
)
**
n *
(
n +
1
)
*
9
**
(
n
+
1
) *
(
x
+
3
)
**
(
n
+
2
)) /
(
5
**
(
n
+
3
))
#display(eq)
def
ratio_test
(
series
):
an_1 =
series
.
subs
(
n
, n
+
1
)
an =
series
ratio =
abs
(
an_1
/
an
)
result =
sp
.
limit
(
ratio
.
subs
(
x
+
3
,
1
),
n
,
sp
.
oo
) # result is 9/5 * (x+3)
final =
sp
.
solve
(
result *
x -
1
, x
) # solve 9/5 * (x+3) < 1 print
(
'Limit is :'
, *
final
)
if
final
[
0
] <
1
:
print
(
"The series converges."
)
elif
final
[
0
] >
1
:
print
(
"The series diverges."
)
else
:
print
(
"The test is inconclusive."
)
ratio_test
(
eq
)
In [3]:
def
ratio_test
(
series
):
an_1 =
series
.
subs
(
n
, n
+
1
)
an =
series
ratio =
abs
(
an_1
/
an
)
result =
sp
.
limit
(
ratio
.
subs
(
x
+
3
,
1
),
n
,
sp
.
oo
) # result is 9/5 * (x+3)
final =
sp
.
solve
(
result *
x -
1
, x
) # solve 9/5 * (x+3) < 1 return
final
def
interval
(
series
):
interval =
[]
radius =
ratio_test
(
series
)[
0
]
interval1 =
radius -
3
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
2/6
Interval of convergence:
[-22/9, -32/9]
Radius of convergence : interval2 =
-
radius -
3
interval
.
append
(
interval1
)
interval
.
append
(
interval2
)
return
interval
print
(
'Interval of convergence:'
)
print
(
interval
(
eq
))
print
(
'Radius of convergence : '
)
display
(
*
ratio_test
(
eq
))
In [171…
matplotlib inline
In [4]:
f =
9
*
(
x +
3
)
**
2 /
(
9
*
x +
32
)
**
2
series =
((
-
1
)
**
n *
(
n +
1
)
*
9
**
(
n
+
1
)
*
(
x +
3
)
**
(
n
+
2
)) /
(
5
**
(
n
+
3
))
s5 =
sp
.
summation
(
series
,[
n
,
0
,
5
])
s10 =
sp
.
summation
(
series
,[
n
,
0
,
10
])
s15 =
sp
.
summation
(
series
,[
n
,
0
,
15
])
p1 =
plot
(
s5
,(
x
,
-
4
,
-
2
), ylim =
[
-
4
,
4
], show =
False
)
p2 =
plot
(
s10
,(
x
,
-
4
,
-
2
), ylim =
[
-
4
,
4
], show =
False
)
p3 =
plot
(
s15
,(
x
,
-
4
,
-
2
), ylim =
[
-
4
,
4
], show =
False
)
p4 =
plot
(
f
,(
x
,
-
4
,
-
2
), ylim =
[
-
4
,
4
], show =
False
)
p1
.
extend
(
p2
)
p1
.
extend
(
p3
)
p1
.
extend
(
p4
)
p1
.
show
()
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
3/6
The radius of convergence is: In [5]:
J =
((
-
1
)
**
n *
(
x **
(
2
*
n
+
1
))) /
(
sp
.
factorial
(
n
)
*
sp
.
factorial
(
n
+
1
)
*
2
**
(
2
*
n
+
1
))
display
(
J
)
def
radius
(
series
):
an_1 =
series
.
subs
(
n
,
n
+
1
)
an =
series
ratio =
abs
(
an_1
/
an
)
result =
sp
.
limit
(
ratio
,
n
,
sp
.
oo
)
return
result
if
radius
(
J
) ==
0
:
print
(
'The radius of convergence is: '
)
display
(
sp
.
oo
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
4/6
In [6]:
bessel_function =
sp
.
besselj
(
1
, x
)
series =
((
-
1
)
**
n *
(
x **
(
2
*
n
+
1
))) /
(
sp
.
factorial
(
n
)
*
sp
.
factorial
(
n
+
1
)
*
2
**
(
2
*
i =
sp
.
symbols
(
'i'
)
s0 =
sp
.
Sum
(
series
.
subs
(
n
, i
), (
i
, 1
, 1
))
.
doit
()
s1 =
sp
.
Sum
(
series
.
subs
(
n
, i
), (
i
, 1
, 2
))
.
doit
()
s2 =
sp
.
Sum
(
series
.
subs
(
n
, i
), (
i
, 1
, 3
))
.
doit
()
s3 =
sp
.
Sum
(
series
.
subs
(
n
, i
), (
i
, 1
, 4
))
.
doit
()
s4 =
sp
.
Sum
(
series
.
subs
(
n
, i
), (
i
, 1
, 5
))
.
doit
()
p1 =
sp
.
plot
(
s0
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p2 =
sp
.
plot
(
s1
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p3 =
sp
.
plot
(
s2
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p4 =
sp
.
plot
(
s3
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p5 =
sp
.
plot
(
s4
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p6 =
sp
.
plot
(
bessel_function
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
)
p1
.
extend
(
p2
)
p1
.
extend
(
p3
)
p1
.
extend
(
p4
)
p1
.
extend
(
p5
)
p1
.
extend
(
p6
)
p1
.
show
()
In [7]:
bessel_functions =
[
sp
.
besselj
(
n
, x
) for
n in
range
(
5
)]
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
5/6
plots =
[
sp
.
plot
(
bessel_function
, (
x
, 0
, 5
), ylim
=
[
-
0.6
, 0.6
], show
=
False
) for
for
i in
range
(
1
, 5
):
plots
[
0
]
.
extend
(
plots
[
i
])
plots
[
0
]
.
show
()
In [8]:
x
, n
, a =
sp
.
symbols
(
'x n a'
)
def
nth_derivative_and_eval
(
f
, n
, a
):
nth_derivative =
sp
.
diff
(
f
, x
, n
)
nth_derivative_at_a =
nth_derivative
.
subs
(
x
, a
)
return
nth_derivative_at_a
f_a =
sp
.
sin
(
x
)
a_value =
0
taylor_polynomial_a =
sum
(
nth_derivative_and_eval
(
f_a
, i
, a_value
) /
sp
.
factori
display
(
taylor_polynomial_a
)
11/19/23, 5:44 PM
Lab9temp_152_23C
localhost:8888/nbconvert/html/Lab9temp_152_23C.ipynb?download=false
6/6
In [9]:
f_b =
sp
.
tan
(
x
)
taylor_polynomial_b =
sum
(
nth_derivative_and_eval
(
f_b
, i
, a_value
) /
sp
.
factori
display
(
taylor_polynomial_b
)
In [10]:
f_c =
sp
.
exp
(
x
)
taylor_polynomial_c =
sum
(
nth_derivative_and_eval
(
f_c
, i
, a_value
) /
sp
.
factori
display
(
taylor_polynomial_c
)
In [11]:
f_d =
sp
.
sin
(
x
)
a_value_d =
sp
.
pi /
2
taylor_polynomial_d =
sum
(
nth_derivative_and_eval
(
f_d
, i
, a_value_d
) /
sp
.
facto
display
(
taylor_polynomial_d
)
In [ ]:
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help