Lab3_final

pdf

School

Texas A&M University *

*We aren’t endorsed by this school

Course

152

Subject

Mathematics

Date

Feb 20, 2024

Type

pdf

Pages

5

Uploaded by MasterFireHeron35

Report
MATH 152 Lab 3 Samuel Molero, Angus Ladd, Arlin Birkby, Karthik Nuti Instructions: Complete the lab assignment in your assigned groups. Unless stated otherwise, your answers should be obtained using Python code. Do not modify the cell above, as it contains all the packages you will need. It is highly recommended to not use any additional packages. NOTE: If you took MATH 151 last semester, notice that the import statement for SymPy is di ff erent- for each SymPy command you use, you have to preface it with "sp." For example, "symbols('x')" becomes "sp.symbols('x')". Except for plot and plot_parametric - you don't need to type "sp." for those. ANOTHER NOTE: Approximate answers are acceptable for all non-plotting parts of this week's lab. Question 1 1a In   [3]: import sympy as sp from sympy.plotting import ( plot , plot_parametric ) In   [5]: x = sp . symbols ( 'x' , real = True ) f_x = sp . sqrt ( x ) g_x = ( x - 3 ) ** 2 p1 = plot ( f_x ,( x , 0 , 5 ), show = False ) p2 = plot ( g_x ,( x , 0 , 5 ), show = False ) p1 . extend ( p2 ) p1 . show () Lab3temp_152_23C http://localhost:8888/nbconvert/html/Desktop/152/Lab... 1 of 5 9/27/23, 11:33 PM
1b The Volume of the solid rotating at about x = 1 is: 1c In   [6]: #rotating abou the line x = 1 formula = ( 2 * sp . pi ) * ( g_x - f_x ) * ( x - 1 ) intervals = sp . solve ( f_x - g_x , x ) new_intervals = [] for i in intervals : new_intervals . append ( i . evalf ()) volume = sp . integrate ( formula ,( x , new_intervals [ 0 ], new_intervals [ 1 ])) print ( "The Volume of the solid rotating at about x = 1 is: " ) display ( volume . evalf ()) 41.1718167309256 Lab3temp_152_23C http://localhost:8888/nbconvert/html/Desktop/152/Lab... 2 of 5 9/27/23, 11:33 PM
Volume of the solid rotating at about y = 4 Question 2 2a In   [22]: # Enter your Python code here # Enter your Python code here y = sp . symbols ( 'y' , real = True ) f_y = sp . solve ( f_x - y , x )[ 0 ] g_y = sp . solve ( g_x - y , x )[ 0 ] intervals = sp . solve ( f_y - g_y , y ) new_y = [] for i in intervals : new_y . append ( i . evalf ()) formula = 2 * sp . pi * ( f_y - g_y ) * ( y - 4 ) volume = sp . integrate ( formula ,( y , 0 , new_y [ 0 ])) print ( "Volume of the solid rotating at about y = 4" ) display ( volume . evalf ()) 48.2575581197776 In   [23]: # Enter your Python code here f_x = 2 * sp . E ** ( x ** 2 ) g_x = 3 * x + 2 # display(f_x,g_x) p1 = plot ( f_x ,( x , 0 , 1 ), show = False ) p2 = plot ( g_x ,( x , 0 , 1 ), show = False ) p1 . extend ( p2 ) p1 . show () Lab3temp_152_23C http://localhost:8888/nbconvert/html/Desktop/152/Lab... 3 of 5 9/27/23, 11:33 PM
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2b The volume of the solid is: Question 3 3a In   [14]: # Enter your Python code here interval_1 = sp . nsolve ( f_x - g_x ,( 0 )) interval_2 = sp . nsolve ( f_x - g_x ,( 0.9 )) formula = ( sp . sqrt ( 3 ) / 4 ) * ( g_x - f_x ) ** 2 volume = sp . integrate ( formula ,( x , interval_1 , interval_2 )) print ( "The volume of the solid is: " ) display ( volume . evalf ()) 0.191894750193957 Lab3temp_152_23C http://localhost:8888/nbconvert/html/Desktop/152/Lab... 4 of 5 9/27/23, 11:33 PM
3b 3c In   [12]: p = 900 g = 9.8 y = sp . symbols ( 'y' , real = True , positive = True ) #intervals 0 - 20 # r^2 + y^2 = 20^2 formula = ( sp . pi * ( p * g )) * ( 400 - y ** 2 ) * ( 22 - y ) #display(formula) work = sp . integrate ( formula ,( y , - 20 , 20 )) display ( work ) 2069760000.0 π In   [13]: h = sp . symbols ( 'h' , real = True , positive = True ) formula = (( 400 - ( 20 - y ) ** 2 ) * ( 42 - y )) a = sp . integrate ( formula ,( y , 0 , 40 - h )) display ( a * ( 900 * 9.8 * sp . pi )) 8820.0 π ( + 840(40 h ) 2 ) (40 h ) 4 4 82(40 h ) 3 3 Lab3temp_152_23C http://localhost:8888/nbconvert/html/Desktop/152/Lab... 5 of 5 9/27/23, 11:33 PM