ASSIGNMENT4
pdf
keyboard_arrow_up
School
Northeastern University *
*We aren’t endorsed by this school
Course
6700
Subject
Industrial Engineering
Date
Dec 6, 2023
Type
Pages
3
Uploaded by HighnessIron12089
PROBLEM 1
Name
Age
City
0
Alice
25
New York
1
Bob
30
San Francisco
2
Charlie
35
Los Angeles
3
David
28
Chicago
PROBLEM 2
Name
Age
City
0
Alice
25
New York
1
Bob
30
San Francisco
2
Charlie
35
Los Angeles
0
Alice
1
Bob
2
Charlie
3
David
Name: Name, dtype: object
Age of Charlie: 35
Information of the oldest person:
Name
Age
City
2
Charlie
35
Los Angeles
Names of people who live in San Francisco: ['Bob']
PROBLEM 3
In [52]:
import
pandas
as
pd
data
=
{
'Name'
: [
'Alice'
,
'Bob'
,
'Charlie'
,
'David'
],
'Age'
: [
25
,
30
,
35
,
28
],
'City'
: [
'New York'
,
'San Francisco'
,
'Los Angeles'
,
'Chicago'
] }
df
=
pd
.
DataFrame
(
data
)
print
(
df
)
In [53]:
#q1
print
(
df
.
head
(
3
))
In [54]:
#q2
print
(
df
.
Name
)
In [55]:
#q3
age_of_charlie
=
df
.
loc
[
df
[
'Name'
]
==
'Charlie'
,
'Age'
]
.
values
[
0
]
print
(
"Age of Charlie:"
,
age_of_charlie
)
In [56]:
#q4
info_of_oldest_person
=
df
[
df
[
'Age'
]
==
df
[
'Age'
]
.
max
()]
print
(
"Information of the oldest person:\n"
,
info_of_oldest_person
)
In [57]:
#q5
people_living_in_sf
=
df
[
df
[
'City'
]
==
'San Francisco'
][
'Name'
]
.
tolist
()
print
(
"Names of people who live in San Francisco:"
,
people_living_in_sf
)
In [58]:
#q1
import
pandas
as
pd
Name
Age
City
0
Alice
25
New York
1
Bob
30
San Francisco
2
Charlie
35
Los Angeles
3
David
28
Chicago
Total sales per category is : Category
Clothing
70
Electronics
2300
Name: Price, dtype: int64
Average prices of thr products are : Product
Jeans
50.0
Laptop
1200.0
Smartphone
800.0
T-Shirt
20.0
Tablet
300.0
Name: Price, dtype: float64
total revenue generated through sales is 5500
Product with highest price is: Laptop
Product with lowest price is: T-Shirt
PROBLEM 4
sales_data
=
{
'Category'
: [
'Electronics'
,
'Clothing'
,
'Electronics'
,
'Clothing'
,
'Elec
'Product'
: [
'Laptop'
,
'T-Shirt'
,
'Smartphone'
,
'Jeans'
,
'Tablet'
],
'Price'
: [
1200
,
20
,
800
,
50
,
300
],
'Quantity'
: [
3
,
5
,
2
,
4
,
1
]}
sales_df
=
pd
.
DataFrame
(
sales_data
)
print
(
df
)
In [59]:
#q2
grouped
=
sales_df
.
groupby
(
'Category'
)
total_sales
=
grouped
[
'Price'
]
.
sum
()
print
(
'Total sales per category is :'
,
total_sales
)
In [60]:
#q3
grouped
=
sales_df
.
groupby
(
'Product'
)
avg_pp
=
grouped
[
'Price'
]
.
mean
()
print
(
'Average prices of thr products are :'
,
avg_pp
)
In [61]:
#q4
df
[
'Total Revenue'
]
=
sales_df
[
'Price'
]
*
sales_df
[
'Quantity'
]
total_revenue
=
df
[
'Total Revenue'
]
.
sum
()
print
(
'total revenue generated through sales is'
,
total_revenue
)
In [62]:
#q5
highest_priced_product
=
sales_df
.
loc
[
sales_df
[
'Price'
]
.
idxmax
()][
'Product'
]
highest_price
=
sales_df
[
'Price'
]
.
max
()
lowest_priced_product
=
sales_df
.
loc
[
sales_df
[
'Price'
]
.
idxmin
()][
'Product'
]
lowest_price
=
sales_df
[
'Price'
]
.
min
()
print
(
"Product with highest price is:"
,
highest_priced_product
)
print
(
"Product with lowest price is:"
,
lowest_priced_product
)
details of rows where age is greater than 25:
Name
Age
City
Total Revenue
1
Bob
30
San Francisco
100
2
Charlie
35
Los Angeles
1600
3
David
28
Chicago
200
details of rows where city is not New York:
Name
Age
City
Total Revenue
1
Bob
30
San Francisco
100
2
Charlie
35
Los Angeles
1600
3
David
28
Chicago
200
Rows where products category is Electronics:
Category
Product
Price
Quantity
0
Electronics
Laptop
1200
3
2
Electronics
Smartphone
800
2
4
Electronics
Tablet
300
1
Rows where quantity sold is greater than 2:
Category
Product
Price
Quantity
0
Electronics
Laptop
1200
3
1
Clothing
T-Shirt
20
5
3
Clothing
Jeans
50
4
DataFrame created with rows wherein price is between $30 and $500:
Category Product
Price
Quantity
3
Clothing
Jeans
50
4
4
Electronics
Tablet
300
1
In [63]:
#q1
age_greater_than_25
=
df
[
df
[
'Age'
]
>
25
]
print
(
"details of rows where age is greater than 25:"
)
print
(
age_greater_than_25
)
In [64]:
#q2
city_is_not_new_york
=
df
[
df
[
'City'
]
!=
'New York'
]
print
(
"\n details of rows where city is not New York:"
)
print
(
city_is_not_new_york
)
In [65]:
#q3
elec_category
=
sales_df
[
sales_df
[
'Category'
]
==
'Electronics'
]
print
(
"Rows where products category is Electronics:"
)
print
(
elec_category
)
In [66]:
#q4
quant_gr_than_2
=
sales_df
[
sales_df
[
'Quantity'
]
>
2
]
print
(
"Rows where quantity sold is greater than 2:"
)
print
(
quant_gr_than_2
)
In [67]:
#q5
price_30_to_500
=
sales_df
[(
sales_df
[
'Price'
]
>=
30
)
&
(
sales_df
[
'Price'
]
<=
500
)]
print
(
"DataFrame created with rows wherein price is between $30 and $500:"
)
print
(
price_30_to_500
)
In [ ]:
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help