Discussion Week 8 + Tut8

pdf

School

University of Notre Dame *

*We aren’t endorsed by this school

Course

2030

Subject

Electrical Engineering

Date

Nov 24, 2024

Type

pdf

Pages

7

Uploaded by ksusanto

Report
Week 8 Discussion 4+ Tutorial S22 CHEM 110A May. 16** May. 22™ 1 Maxwell Relations 1.1 Review: the derivations H=U+PV (- M G=H-T5 & &> aH~TaS ~-TS =U+ PV ——N H 15t Ve, U= .g-v- w Anady2e e Jfiz?%(&&mm P-V ok o7y ) S = 0@4_@0? ol = ~ Py _L'J«&'D , ols= ?"’so@= T D oltl = Tolé - Paly + olH = ol + olCPV) Tol$ - pAV + BAY + VP Tols + VoLp
oG = AH- L) = T/G+votf>-cat‘r-}‘d; = -8alT + VP Ne, olo pare wieth . totl lffesentiods du= Tols- Polv = (&“)voes"( )gaéV oln = Tols tPolp= (1 }azgf lsoef’ olG = ~golr + Vlp = (éfi)po(7—+ (fi‘)ra[P =35 V W, H § ae S&z«fz&mchms A mied 2 ran‘a@ggaae (‘V( ) [‘a%'(%)s)/*(avs (3>;)v Seemz . = ( )sq(%)p w\fl"c' o E“m‘“w”@ > (2),= (2, chofl:
1.2 Example-1 Show that (5v), = - Assume Ve ol Kne) MW bl )’( v.$) UV, S) na.*rum& vorablo g . {H (P,s) Si;;:fim G(P-T) (3. @29, Just Qu’b (_Q_,(G]:T"@' @ (g(eBe) = ‘(‘3—\75 = ’(;s)v‘ 3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2 Joule-Thomson Experiment f'sen#afl'p?c 2.1 Review: the derivations LY By . B X S
= -§°R£v-§°%fiiv = Pv- RV, . o N %@:o@@al‘rf-(gg)r"ep [ “B > 0= G(E)+(5 vy @y te f/ (%)' T ouyrive e chomge eR H It Ps@ Congfcerrt. T,
2.2 Example-2 Using the equation: aH\ _[(UY | (V) .y ar), " |\av), ), " ive an expression giving (%)1 entirely in terms of measurable quantities for a gas. —— How ofe We get #his 2‘ H= W+PV > o0-1= +P0(‘”V”Lf . JP- (24 T*(i )al\/ (fln)aer (), )vO‘ S * Gotr+ (2ol aotr+£zgc)r+PJofv+ \lp .‘5 Xothe Ymod) : oA =0 > el [ gad il i(i
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
2.3 Example-3 Jsing the equation: aH\ _[(UY | (V) .y ar), |\av), ), " show that the Joule-Thomson coefficient, g s_7 = 0 for an ideal gas. At =-$(%§)" ucr) = -4 [(% )r(aV),w( &) +v] ‘2-2"7[0+P(%%)r+v,] nRT ‘fi[f’(f%%l))-r'*vj = - fi[P-nkT (-3l +v] = 'Z';]}——"-'-EI*- VJ = —#L—V-‘}-VJ = O )