MATHEMATICAL METHODS IN THE PHY SCIENC - 3rd Edition - by Boas - ISBN 9781118048870

MATHEMATICAL METHODS IN THE PHY SCIENC
3rd Edition
Boas
Publisher: WILEY
ISBN: 9781118048870

Solutions for MATHEMATICAL METHODS IN THE PHY SCIENC

Browse All Chapters of This Textbook

Chapter 1.14 - Accuracy Of Series ApproximationsChapter 1.15 - Some Uses Of SeriesChapter 1.16 - Miscellaneous ProblemChapter 2.4 - Terminology And NotationChapter 2.5 - Complex AlgebraChapter 2.6 - Complex Infinite SeriesChapter 2.7 - Complex Power Series; Disk Of ConvergenceChapter 2.8 - Elementary Functions Of Complex NumbersChapter 2.9 - Euler's FormulaChapter 2.10 - Power And Roots Of Complex NumberChapter 2.11 - The Exponential And Trigonometric FunctionChapter 2.12 - Hyperbolic FunctionsChapter 2.14 - Complex Roots And PowersChapter 2.15 - Inverse Trigonometric And Hyperbolic FunctionsChapter 2.16 - Some ApplicationsChapter 2.17 - Miscellaneous ProblemsChapter 3.2 - Matrices; Row ReductionChapter 3.3 - Determinants; Cramer's RuleChapter 3.4 - VectorsChapter 3.5 - Lines And PlanesChapter 3.6 - Matrix OperationsChapter 3.7 - Linear Combination, Linear Functions, Linear OperatorsChapter 3.8 - Linear Dependence And IndependenceChapter 3.9 - Special Matrices And FormulasChapter 3.10 - Linear Vector SpacesChapter 3.11 - Eigenvalues And Eigenvectors; Diagonalizing MatricesChapter 3.12 - Application Of DiagonalizationChapter 3.13 - A Brief Introduction To GroupsChapter 3.14 - General Vector SpacesChapter 3.15 - Miscellaneous ProblemChapter 4.1 - Introduction And NotationChapter 4.2 - Power Series In Two VariablesChapter 4.3 - Total DifferentialsChapter 4.4 - Approximations Using DifferentialsChapter 4.5 - Chain Rule Or Differentiating A Function Of A FunctionChapter 4.6 - Implicit DifferentiationChapter 4.7 - More Chain RuleChapter 4.8 - Application Of Partial Differentiation To Maximum And Minimum ProblemsChapter 4.9 - Maximum And Minimum Problems With Constraints; Lagrange MultipliersChapter 4.10 - Endpoint Or Boundary Point ProblemsChapter 4.11 - Change Of VariablesChapter 4.12 - Differentiation Of Integrals; Leibniz' RuleChapter 4.13 - Miscellaneous ProblemChapter 5.1 - IntroductionChapter 5.2 - Double And Triple IntegralsChapter 5.3 - Applications Of Integration; Single And Multiple IntegralsChapter 5.4 - Change Of Variables In Integrals; JacobiansChapter 5.5 - Surface IntegralsChapter 5.6 - Miscellaneous ProblemsChapter 6.3 - Triple ProductsChapter 6.4 - Differentiation Of VectorsChapter 6.6 - Directional Derivative; GradientChapter 6.7 - Some Other Expressions InvolvingChapter 6.8 - Line IntegralsChapter 6.9 - Green's Theorem In The PlaneChapter 6.10 - The Divergence And The Divergence TheoremChapter 6.11 - The Curl And Stokes' TheoremChapter 6.12 - Miscellaneous ProblemsChapter 7.2 - Simple Harmonic Motion And Wave Motion; Periodic FunctionsChapter 7.3 - Application Of Fourier SeriesChapter 7.4 - Average Value Of A FunctionChapter 7.5 - Fourier CoefficientsChapter 7.6 - Dirichlet ConditionsChapter 7.7 - Complex Form Of Fourier SeriesChapter 7.8 - Other IntervalsChapter 7.9 - Even And Odd FunctionsChapter 7.10 - An Applications To SoundChapter 7.11 - Parseval's TheoremChapter 7.12 - Fourier TransformsChapter 7.13 - Miscellaneous ProblemsChapter 8.1 - IntroductionChapter 8.2 - Separable EquationsChapter 8.3 - Linear First-order EquationsChapter 8.4 - Other Methods For First- Order EquationsChapter 8.5 - Second-order Linear Equations With Constant Coefficients And Zero Right-hand SideChapter 8.6 - Second-order Linear Equations With Constant Coefficients And Right-hand Side Not ZeroChapter 8.7 - Other Second-order EquationsChapter 8.8 - The Laplace TransformChapter 8.9 - Solution Of Differential Equations By Laplace TransformsChapter 8.10 - ConvolutionChapter 8.11 - The Dirac Delta FunctionChapter 8.12 - A Brief Introduction To Green FunctionsChapter 8.13 - Miscellaneous ProblemsChapter 9.1 - IntroductionChapter 9.2 - The Euler EquationChapter 9.3 - Using The Euler EquationChapter 9.4 - The Brachistochrone Problem; CycloidsChapter 9.5 - Several Dependent Variables; Lagrange’s EquationsChapter 9.6 - Isoperimetric ProblemsChapter 9.8 - Miscellaneous ProblemChapter 10.2 - Cartesian TensorsChapter 10.3 - Tensor Notation And OperationsChapter 10.4 - Inertia TensorChapter 10.5 - Kronecker Delta And Levi-civita SymbolChapter 10.6 - Pseudovectors And PseudotensorsChapter 10.7 - More About ApplicationsChapter 10.8 - Curvilinear CoordinatesChapter 10.9 - Vector Operators In Orthogonal Curvilinear CoordinatesChapter 10.10 - Non-cartesian TensorsChapter 10.11 - Miscellaneous ProblemsChapter 11.3 - Definition Of The Gamma Function; Recursion RelationChapter 11.5 - Some Important Formulas Involving Gamma FunctionsChapter 11.6 - Beta FunctionsChapter 11.7 - Beta Functions In Terms Of Gamma FunctionsChapter 11.8 - The Simple PendulumChapter 11.9 - The Error FunctionChapter 11.10 - Asymptotic SeriesChapter 11.11 - Stirling’s FormulaChapter 11.12 - Elliptic Integrals And FunctionsChapter 11.13 - Miscellaneous ProblemsChapter 12.1 - IntroductionChapter 12.2 - Legendre’s EquationChapter 12.3 - Leibniz’ Rule For Differentiating ProductsChapter 12.4 - Rodrigues’ FormulaChapter 12.5 - Generating Function For Legendre PolynomialsChapter 12.6 - Complete Sets Of Orthogonal FunctionsChapter 12.7 - Orthogonality Of The Legendre PolynomialsChapter 12.8 - Normalization Of The Legendre PolynomialsChapter 12.9 - Legendre SeriesChapter 12.10 - The Associated Legendre FunctionsChapter 12.11 - Generalized Power Series Or The Method Of FrobeniusChapter 12.12 - Bessel’s EquationChapter 12.13 - The Second Solution Of Bessel’s EquationChapter 12.14 - Graphs And Zeros Of Bessel FunctionsChapter 12.15 - Recursion RelationsChapter 12.16 - Differential Equations With Bessel Function SolutionsChapter 12.17 - Other Kinds Of Bessel FunctionsChapter 12.18 - The Lengthening PendulumChapter 12.19 - Orthogonality Of Bessel FunctionsChapter 12.20 - Approximate Formulas For Bessel FunctionsChapter 12.21 - Series Solutions; Fuchs’s TheoremChapter 12.22 - Hermite Functions; Laguerre Functions; Ladder OperatorsChapter 12.23 - Miscellaneous ProblemsChapter 13.1 - IntroductionChapter 13.2 - Laplace’s Equation; Steady-state Temperature In A Rectangular PlateChapter 13.3 - The Diffusion Or Heat Flow Equation; The Schro ̈dinger EquationChapter 13.4 - The Wave Equation; The Vibrating StringChapter 13.5 - Steady-state Temperature In A CylinderChapter 13.6 - Vibration Of A Circular MembraneChapter 13.7 - Steady-state Temperature In A SphereChapter 13.8 - Poisson’s EquationChapter 13.9 - Integral Transform Solutions Of Partial Differential EquationsChapter 13.10 - Miscellaneous ProblemsChapter 14.1 - IntroductionChapter 14.2 - Analytic FunctionsChapter 14.3 - Contour IntegralsChapter 14.4 - Laurent SeriesChapter 14.5 - The Residue TheoremChapter 14.6 - Methods Of Finding ResiduesChapter 14.7 - Evaluation Of Definite Integrals By Use Of The Residue TheoremChapter 14.8 - The Point At Infinity; Residues At InfinityChapter 14.9 - MappingChapter 14.10 - Some Applications Of Conformal MappingChapter 14.11 - Miscellaneous ProblemsChapter 15.1 - IntroductionChapter 15.2 - Sample SpaceChapter 15.3 - Probability TheoremsChapter 15.4 - Methods Of CountingChapter 15.5 - Random VariablesChapter 15.6 - Continuous DistributionsChapter 15.7 - Binomial DistributionChapter 15.8 - The Normal Or Gaussian DistributionChapter 15.9 - The Poisson DistributionChapter 15.10 - Statistics And Experimental MeasurementsChapter 15.11 - Miscellaneous Problems

More Editions of This Book

Corresponding editions of this textbook are also available below:

Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Mathematical Methods In The Physical Sciences
1st Edition
ISBN: 9780471084198
Mathematical Methods In The Physical Sciences
2nd Edition
ISBN: 9780471044093

Related Math Textbooks with Solutions

Still sussing out bartleby
Check out a sample textbook solution.
See a sample solution