Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.7, Problem 1P
Find the steady-state temperature distribution inside a sphere of radius 1 when the surface temperatures are as given in Problems 1 to 10.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1. What is the distance travelled by a point
during the time t, if it moves in X- Y plane according to
->
a
the relative
x= a sin ot, y = a (1– cos of) ?
A.
10. A man programs his sprinkler system using the equation 15 sin (kt), where t is in seconds. If he wants it to
have a period of s, what should k be?
3
b.
a.
5%
3
3%
6
C.
5%
6
d.
6%
Problem 54
Find the y-intercept of the line tangent to
y=(x - 4x +8)ecos at x = 2.
cos x2
|
а. -21.032
b. -2.081
с. 0
d. 4.161
Chapter 13 Solutions
Mathematical Methods in the Physical Sciences
Ch. 13.1 - Assume from electrostatics the equations E=/0 and...Ch. 13.1 - Show that the expression u=sin(xvt) describing a...Ch. 13.1 - Assume from electrodynamics the following...Ch. 13.1 - Obtain the heat flow equation (1.3) as follows:...Ch. 13.2 - After you find the series solution of a problem,...Ch. 13.2 - T=0,0x10,100,10x20. Solve the semi-infinite plate...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Show that the solutions of (2.5) can also be...Ch. 13.2 - Show that the series in (2.12) can be summed to...
Ch. 13.2 - Solve Problem 3 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Solve Problem 2 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the temperature distribution in a rectangular...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - In the rectangular plate problem, we have so far...Ch. 13.2 - Consider a finite plate, 10cm by 30cm, with two...Ch. 13.2 - Show that there is only one function u which...Ch. 13.3 - Verify the coefficients in equation (3.14).Ch. 13.3 - A bar 10 cm long with insulated sides is initially...Ch. 13.3 - In the initial steady state of an infinite slab of...Ch. 13.3 - At t=0, two flat slabs each 5cm thick, one at 0...Ch. 13.3 - Prob. 5PCh. 13.3 - Show that the following problem is easily solved...Ch. 13.3 - A bar of length l with insulated sides has its...Ch. 13.3 - A bar of length 2 is initially at 0. From t=0 on,...Ch. 13.3 - Solve Problem 8 if, for t0, the x=0 end of the bar...Ch. 13.3 - Separate the wave equation (1.4) into a space...Ch. 13.3 - Solve the particle in a box problem to find (x,t)...Ch. 13.3 - Do Problem 11 if (x,0)=sin2x on (0,1).Ch. 13.4 - Complete the plucked string problem to get...Ch. 13.4 - A string of length l has a zero initial velocity...Ch. 13.4 - Solve Problem 2 if the initial displacement is:Ch. 13.4 - Solve Problem 2 if the initial displacement is :Ch. 13.4 - A string of length l is initially stretched...Ch. 13.4 - Do Problem 5 if the initial velocity V(x)=(y/t)t=0...Ch. 13.4 - Solve Problem 5 if the initial velocity is:Ch. 13.4 - Solve Problem 5 if the initial velocity is...Ch. 13.4 - In each of the Problems 1 to 8,find the frequency...Ch. 13.4 - Verify that, if k=nT, then the sum of the two...Ch. 13.4 - Verify (4.16) and find a similar formula for a...Ch. 13.4 - In Sections 2, 3, 4, we have solved a number of...Ch. 13.4 - Do Problem 12 for f(x)=1cos2x on (0,).Ch. 13.4 - Do Problem 12 for f(x)=xx3 on (0, 1).Ch. 13.5 - Compute numerically the coefficients (5.16) of the...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - A flat circular plate of radius a is initially at...Ch. 13.5 - Do Problem 4 if the initial temperature...Ch. 13.5 - Consider Problem 4 if the initial temperature...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Water at 100 is flowing through a long pipe of...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - A cube is originally at 100. From t=0 on, the...Ch. 13.5 - The following two R(r) equations arise in various...Ch. 13.5 - Separate Laplaces equation in two dimensions in...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - Find the steady state temperature distribution in...Ch. 13.5 - Solve Problem 14 if the temperatures of the two...Ch. 13.6 - Continue Figure 6.1 to show the fundamental modes...Ch. 13.6 - Prob. 2PCh. 13.6 - Separate the wave equation in two-dimensional...Ch. 13.6 - Find the characteristic frequencies for sound...Ch. 13.6 - A square membrane of side l is distorted into the...Ch. 13.6 - Let V=0 in the Schrödinger equation (3.22) and...Ch. 13.6 - In your Problem 6 solutions, find some examples of...Ch. 13.6 - Do Problem 6 in polar coordinates to find the...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Do Problem 11 if the curved surface is held at...Ch. 13.7 - Find the electrostatic potential outside a...Ch. 13.7 - Find the steady-state temperature distribution in...Ch. 13.7 - A sphere initially at 0 has its surface kept at...Ch. 13.7 - Separate the wave equation in spherical...Ch. 13.7 - Do Problem 6.6 in 3 dimensional rectangular...Ch. 13.7 - Prob. 18PCh. 13.7 - Find the eigenfunctions and energy eigenvalues for...Ch. 13.7 - Write the Schrödinger equation (3.22) if is a...Ch. 13.7 - Prob. 21PCh. 13.7 - Find the energy eigenvalues and eigen functions...Ch. 13.8 - Show that the gravitational potential V=Gm/r...Ch. 13.8 - Using the formulas of Chapter 12, Section 5, sum...Ch. 13.8 - Do the problem in Example 1 for the case of a...Ch. 13.8 - Prob. 4PCh. 13.8 - Find the method of images for problem 4.Ch. 13.8 - Substitute (8.25) into (8.22) and use (8.23) and...Ch. 13.8 - Verify that the Green function in (8.29) is zero...Ch. 13.8 - Show that the Green function (8.28) which is zero...Ch. 13.8 - Show that our results can be extended to find the...Ch. 13.9 - Verify that (9.15) follows from (9.14). Hint: Use...Ch. 13.9 - A metal plate covering the first quadrant has the...Ch. 13.9 - Consider the heat flow problem of Section 3. Solve...Ch. 13.9 - A semi-infinite bar is initially at temperature...Ch. 13.9 - Prob. 5PCh. 13.9 - Continue the problem of Example 2 in the following...Ch. 13.9 - Continue with Problem 4 as in Problem 6.Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - Solve Problem 1 if T=0 for x=0,x=1,y=0, and T=1x...Ch. 13.10 - Solve Problem 1 if the sides x=0 and x=1 are...Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - A bar of length l is initially at 0. From t=0 on,...Ch. 13.10 - Do Problem 5 if the x=0 end is insulated and the...Ch. 13.10 - Solve Problem 2 if the sides x=0 and x=1 are...Ch. 13.10 - A slab of thickness 10cm has its two faces at 10...Ch. 13.10 - A string of length l has initial displacement...Ch. 13.10 - Solve Problem 5.7 if half the curved surface of...Ch. 13.10 - The series in Problem 5.12 can be summed (see...Ch. 13.10 - A plate in the shape of a quarter circle has...Ch. 13.10 - Sum the series in Problem 12 to get...Ch. 13.10 - A long cylinder has been cut into quarter...Ch. 13.10 - Repeat Problems 12 and 13 for a plate in the shape...Ch. 13.10 - Consider the normal modes of vibration for a...Ch. 13.10 - Sketch some of the normal modes of vibration for a...Ch. 13.10 - Repeat Problem 17 for a membrane in the shape of a...Ch. 13.10 - Prob. 19MPCh. 13.10 - Use Problem 7.16 to find the characteristic...Ch. 13.10 - The surface temperature of a sphere of radius 1 is...Ch. 13.10 - Find the interior temperature in a hemisphere if...Ch. 13.10 - Find the steady-state temperature in the region...Ch. 13.10 - Find the general solution for the steady-state...Ch. 13.10 - The Klein-Gordon equation is 2u=1/v22u/t2+2u. This...Ch. 13.10 - Prob. 26MPCh. 13.10 - Do Problem 26 for a rectangular membrane.Ch. 13.10 - Find the steady-state temperature in a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Assessment 1-1A The following is a magic square all rows, columns, and diagonals sum to the same number. Find t...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
CHECK POINT 1 Write a word description of the set L = {a, b, c, d, e, f}.
Thinking Mathematically (6th Edition)
In Hamilton County, Ohio, the mean number of days needed to sell a house is 86 days (Cincinnati Multiple Listin...
STATISTICS F/BUSINESS+ECONOMICS-TEXT
Finding the Margin of Error In Exercises 33 and 34, use the confidence interval to find the estimated margin of...
Elementary Statistics: Picturing the World (7th Edition)
Remainders and estimates Consider the following convergent series. a. Find an upper bound for the remainder in ...
Calculus: Early Transcendentals (2nd Edition)
In Exercises 17-20, refer to the accompanying table showing results from a Chembio test for hepatitis C among H...
Elementary Statistics (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 5. State the amplitude of y=3 cos(4x) + 6 1. 6 2.-3 3.3 4. 4arrow_forwardThis problem is an example of critically damped harmonic motion. A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring feet. The ball is started in motion from the equilibrium position with a downward velocity of 5 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second). Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. Take as the gravitational acceleration 32 feet per second per second. (Note that the positive y direction is down in this problem.) y = learrow_forward1. A space-ship is heading towards a planet, following the trajectory, r(t) = (Ae-¹² cos(3t), √2Ae-t² sin(3t), - Ae-t² cos(3t)), where A 50, 000km and the time is given in hours. (a) The planet is centred at the origin and has a radius, rp = 2,000km. At what time does the ship reach the planet? Give your answer (in hours) both as an exact expression and as a decimal correct to 4 significant figures. (b) To 4 significant figures and including units, what are the velocity and speed of the space-ship when it reaches the planet?arrow_forward
- 13. A sinusoidal function has an amplitude of 0.75 units, a period of 1440°, and a maximum at (0, –3). Determine an equation of the function. a. y = 0.25 cos(0.25x) – 3.75 b. у-0.25 соs(0.75х)- 3.75 с. у-0.75 сos(0.25х) -3.75 d. y= 0.75 cos(0.75x) – 3.75arrow_forward1. A space-ship is heading towards a planet, following the trajectory, -t r(t) = Ae¯² (5 cos(4t), 4 sin(4t), −3 sin(4t)), where A 12, 000km and the time is given in hours. (a) Ⓐ✓ The planet is centred at the origin and has a radius, rp = 3,000km. At what time does the ship reach the surface of the planet? Give your answer (in hours) both as an exact expression and as a decimal correct to 4 significant figures. (b) As an exact expression in its simplest form, what is the velocity of the space-ship at time (in hours) t = π/2?arrow_forward2. A bacterial population has an initial population of 1500. It is observed that the population is growing in natural order and after 5 minutes, the population becomes 6000. If after 6minutes, 2000 bacteria were removed, determine the number of minutes needed for the population to increase to 2000. Set your reference at t = 0.arrow_forward
- Problem 3arrow_forward2. Sketch the graph of the time domain for the following sine wave equations: 33 sin(2π 3000 t) a) y =arrow_forward10. An airplane flying 390 feet per second at an altitude of 5000 feet flew directly over an observer. The image shows the relationship of the airplane to the observer at a later time. a.) Find an equation relating x and y. 5000°t 390 5000 b.) Find the value of x when y is 6,250. Observer c.) How fast is the distance from the observer to the airplane changing at the time when the airplane is dy at the time when dt dx = 390 and y = 6,250? dt 6,250 feet from the observer? That is, what isarrow_forward
- 3. The parameters needed to describe the survivor curve for a microbial population at 110 °C is D'=1.2 min and n= 0.4. Determine the number of survivors after a process of 10 min, when the initial population is 2 x 10°.arrow_forwardA particles velocity is 7 cos(2t) meters per second. at time t=0 its gone 2meters, where is it at time t=4arrow_forwardWhat is the correct way to solve for the following problem:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
What is a Linear Equation in One Variable?; Author: Don't Memorise;https://www.youtube.com/watch?v=lDOYdBgtnjY;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY