Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.4, Problem 4P
Solve Problem 2 if the initial displacement is :
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I =
4t? dt
3. A particle moves along the x-axis. At time t seconds, its acceleration is given by a = 4t + 6 72₁ t ²
0. Given that t = 2 seconds, its velocity is 28 m/s. What is its initial velocity, and displacement at 2
seconds?
If the position of a particle of mass m at time t seconds is given by
7= ( + 1)i- 2j+fk, which of the following fits the motion of the objecr?
Variable
Constant
Velocity
Acceleration
Chapter 13 Solutions
Mathematical Methods in the Physical Sciences
Ch. 13.1 - Assume from electrostatics the equations E=/0 and...Ch. 13.1 - Show that the expression u=sin(xvt) describing a...Ch. 13.1 - Assume from electrodynamics the following...Ch. 13.1 - Obtain the heat flow equation (1.3) as follows:...Ch. 13.2 - After you find the series solution of a problem,...Ch. 13.2 - T=0,0x10,100,10x20. Solve the semi-infinite plate...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Solve the semi-infinite plate problem if the...Ch. 13.2 - Show that the solutions of (2.5) can also be...Ch. 13.2 - Show that the series in (2.12) can be summed to...
Ch. 13.2 - Solve Problem 3 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Solve Problem 2 if the plate is cut off at height...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - Find the temperature distribution in a rectangular...Ch. 13.2 - Find the steady-state temperature distribution in...Ch. 13.2 - In the rectangular plate problem, we have so far...Ch. 13.2 - Consider a finite plate, 10cm by 30cm, with two...Ch. 13.2 - Show that there is only one function u which...Ch. 13.3 - Verify the coefficients in equation (3.14).Ch. 13.3 - A bar 10 cm long with insulated sides is initially...Ch. 13.3 - In the initial steady state of an infinite slab of...Ch. 13.3 - At t=0, two flat slabs each 5cm thick, one at 0...Ch. 13.3 - Prob. 5PCh. 13.3 - Show that the following problem is easily solved...Ch. 13.3 - A bar of length l with insulated sides has its...Ch. 13.3 - A bar of length 2 is initially at 0. From t=0 on,...Ch. 13.3 - Solve Problem 8 if, for t0, the x=0 end of the bar...Ch. 13.3 - Separate the wave equation (1.4) into a space...Ch. 13.3 - Solve the particle in a box problem to find (x,t)...Ch. 13.3 - Do Problem 11 if (x,0)=sin2x on (0,1).Ch. 13.4 - Complete the plucked string problem to get...Ch. 13.4 - A string of length l has a zero initial velocity...Ch. 13.4 - Solve Problem 2 if the initial displacement is:Ch. 13.4 - Solve Problem 2 if the initial displacement is :Ch. 13.4 - A string of length l is initially stretched...Ch. 13.4 - Do Problem 5 if the initial velocity V(x)=(y/t)t=0...Ch. 13.4 - Solve Problem 5 if the initial velocity is:Ch. 13.4 - Solve Problem 5 if the initial velocity is...Ch. 13.4 - In each of the Problems 1 to 8,find the frequency...Ch. 13.4 - Verify that, if k=nT, then the sum of the two...Ch. 13.4 - Verify (4.16) and find a similar formula for a...Ch. 13.4 - In Sections 2, 3, 4, we have solved a number of...Ch. 13.4 - Do Problem 12 for f(x)=1cos2x on (0,).Ch. 13.4 - Do Problem 12 for f(x)=xx3 on (0, 1).Ch. 13.5 - Compute numerically the coefficients (5.16) of the...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - A flat circular plate of radius a is initially at...Ch. 13.5 - Do Problem 4 if the initial temperature...Ch. 13.5 - Consider Problem 4 if the initial temperature...Ch. 13.5 - Find the steady-state temperature distribution in...Ch. 13.5 - Water at 100 is flowing through a long pipe of...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - A cube is originally at 100. From t=0 on, the...Ch. 13.5 - The following two R(r) equations arise in various...Ch. 13.5 - Separate Laplaces equation in two dimensions in...Ch. 13.5 - Find the steady-state distribution of temperature...Ch. 13.5 - Find the steady state temperature distribution in...Ch. 13.5 - Solve Problem 14 if the temperatures of the two...Ch. 13.6 - Continue Figure 6.1 to show the fundamental modes...Ch. 13.6 - Prob. 2PCh. 13.6 - Separate the wave equation in two-dimensional...Ch. 13.6 - Find the characteristic frequencies for sound...Ch. 13.6 - A square membrane of side l is distorted into the...Ch. 13.6 - Let V=0 in the Schrödinger equation (3.22) and...Ch. 13.6 - In your Problem 6 solutions, find some examples of...Ch. 13.6 - Do Problem 6 in polar coordinates to find the...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Find the steady-state temperature distribution...Ch. 13.7 - Do Problem 11 if the curved surface is held at...Ch. 13.7 - Find the electrostatic potential outside a...Ch. 13.7 - Find the steady-state temperature distribution in...Ch. 13.7 - A sphere initially at 0 has its surface kept at...Ch. 13.7 - Separate the wave equation in spherical...Ch. 13.7 - Do Problem 6.6 in 3 dimensional rectangular...Ch. 13.7 - Prob. 18PCh. 13.7 - Find the eigenfunctions and energy eigenvalues for...Ch. 13.7 - Write the Schrödinger equation (3.22) if is a...Ch. 13.7 - Prob. 21PCh. 13.7 - Find the energy eigenvalues and eigen functions...Ch. 13.8 - Show that the gravitational potential V=Gm/r...Ch. 13.8 - Using the formulas of Chapter 12, Section 5, sum...Ch. 13.8 - Do the problem in Example 1 for the case of a...Ch. 13.8 - Prob. 4PCh. 13.8 - Find the method of images for problem 4.Ch. 13.8 - Substitute (8.25) into (8.22) and use (8.23) and...Ch. 13.8 - Verify that the Green function in (8.29) is zero...Ch. 13.8 - Show that the Green function (8.28) which is zero...Ch. 13.8 - Show that our results can be extended to find the...Ch. 13.9 - Verify that (9.15) follows from (9.14). Hint: Use...Ch. 13.9 - A metal plate covering the first quadrant has the...Ch. 13.9 - Consider the heat flow problem of Section 3. Solve...Ch. 13.9 - A semi-infinite bar is initially at temperature...Ch. 13.9 - Prob. 5PCh. 13.9 - Continue the problem of Example 2 in the following...Ch. 13.9 - Continue with Problem 4 as in Problem 6.Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - Solve Problem 1 if T=0 for x=0,x=1,y=0, and T=1x...Ch. 13.10 - Solve Problem 1 if the sides x=0 and x=1 are...Ch. 13.10 - Find the steady-state temperature distribution in...Ch. 13.10 - A bar of length l is initially at 0. From t=0 on,...Ch. 13.10 - Do Problem 5 if the x=0 end is insulated and the...Ch. 13.10 - Solve Problem 2 if the sides x=0 and x=1 are...Ch. 13.10 - A slab of thickness 10cm has its two faces at 10...Ch. 13.10 - A string of length l has initial displacement...Ch. 13.10 - Solve Problem 5.7 if half the curved surface of...Ch. 13.10 - The series in Problem 5.12 can be summed (see...Ch. 13.10 - A plate in the shape of a quarter circle has...Ch. 13.10 - Sum the series in Problem 12 to get...Ch. 13.10 - A long cylinder has been cut into quarter...Ch. 13.10 - Repeat Problems 12 and 13 for a plate in the shape...Ch. 13.10 - Consider the normal modes of vibration for a...Ch. 13.10 - Sketch some of the normal modes of vibration for a...Ch. 13.10 - Repeat Problem 17 for a membrane in the shape of a...Ch. 13.10 - Prob. 19MPCh. 13.10 - Use Problem 7.16 to find the characteristic...Ch. 13.10 - The surface temperature of a sphere of radius 1 is...Ch. 13.10 - Find the interior temperature in a hemisphere if...Ch. 13.10 - Find the steady-state temperature in the region...Ch. 13.10 - Find the general solution for the steady-state...Ch. 13.10 - The Klein-Gordon equation is 2u=1/v22u/t2+2u. This...Ch. 13.10 - Prob. 26MPCh. 13.10 - Do Problem 26 for a rectangular membrane.Ch. 13.10 - Find the steady-state temperature in a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Squaring off. Let S stand for the set of all natural numbers that are perfect squares, so S={ 1,4,5,9,16,25,36,...
The Heart of Mathematics: An Invitation to Effective Thinking
The electrical activity of muscles can he monitored with an electromyogram (EMG). The RMS amplitude measurement...
Introductory Mathematics for Engineering Applications
The equivalent expression of x(y+z) by using the commutative property.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
A pool is surrounded by a brick walkway as shown in the diagram. The pool is 3 feet deep and the walkway is 4 f...
Mathematics All Around (6th Edition)
Checkpoint1
Use the substitution method to solve this system:
Answers to Checkpoint exercises are found at the...
Mathematics with Applications In the Management, Natural, and Social Sciences (12th Edition)
a. Fill in the missing numbers in the following factor tree. b. How could you find the top numbers without find...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 1. Vx dx 3.arrow_forwardA model for the position x(t) of an Olympic jump skier says that the acceleration a(t) = x" is proportional to the square of the velocity v(t) = x'(t). Note this model comes from taking into account the friction of air against the skier, and we are greatly simplifying the problem by not taking into account gravity. In this problem, units of distance are in meters and units of 1. time are in seconds. (a) Give an ODE in terms of v(t) only (meaning: no x or a) that corresponds to this model, and find its general solution v. (b) Recalling that our model comes from taking friction into account, which will slow down the skier, say whether you expect your proportionality constant from la to be positive or negative. (c) Use your solution v(t) from la to find x(t). (d) Use the initial conditions' x(0) = 0 and v(0) = 100 to find the unique solution for x(t), the position of the skier. (e) Assume for simplicity the following information: the skiers take 8 seconds before reaching the ground after…arrow_forward2. A plane travels 560 km from Los Angeles to San Francisco in 1 hour (h). If the plane's velocity at time t is v(t) km/h, what is the value of v(t) dt?arrow_forward
- Analytical Solution to the Falling Parachutist Problem Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air bal- loon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient is equal to 12.5 kg/s.arrow_forwardSuppose 100 foot-pounds of work is required to stretch a spring 2 feet beyond its natural length. What is the proportionality constant, k, in the force function F(x) = kæ? Enter your answer as an exact numerical answer.arrow_forward7. Choose two of the following three problems to answer. You may need the following concepts from physics: Mass = Density > Volume Mass = Linear Density x Length Work = Force x Distance Weight (i.e. force due to gravity near the surface of Earth) = Mass x g, where g = 9.8 m/s² a. Find the work needed to lift a 15-meter-long chain with a mass of 10 kilograms if it is hanging from a tall building. b. Find the work needed to pump water out of a tank that is the shape of an inverted cone. The diameter of the cone is 4 meters, and its height is 5 meters. The tank is full of water, which has a density of 1000 kg/m³. The water must be pumped just to the upper rim of the tank to leave the tank. C c. Find the work done by the sun's gravitational force if it pulls an asteroid from a distance of 4 x 10° meters in to a distance of 2 x 10° meters. The force exerted by the sun on the asteroid is given as a function of the distance, x meters, between the sun and the asteroid by F(x) = 5x1012 Aarrow_forward
- If s (t) = 4t3 – 3t describes the position of a particle moving along a straight path where s (t) is measured in meters and t is measured in seconds. The acceleration of the particle at 10 seconds is 1197 meters per second squared. True Falsearrow_forwardA force of 880 newtons stretches a spring 4 meters. A mass of 55 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 8 m/s. Find the equation of motion. x(t) =arrow_forwardIf a= 1/x + 1/y, what is the value of 1/a?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY