Estimate the coordinates of the points given in graph.
Given information:
The given graph is:
Formula used:
- In a graph both the axes are marked with bars with equal length.
- The y coordinate of point on x -axis is 0.
- The x coordinate of point on y -axis is 0.
- The right side of x axis from the center is of positive points, and left is of negative.
- The above side of y axis from the center is of positive points, and downward side is of negative.
Calculation:
To estimate the coordinates of points, A, B, C and D note that both the axes( x and y ) in graph are divided equally with bars.
Since the second bar in x axis is marked 2, i.e. first should be 1 and second is 2, third is 3, and so on, similarly for y axis second is marked 2, i.e. first should be 1 and second is 2, third is 3, and so on.
Since, point A is on x -axis, i.e. the y coordinate of point A is 0 and it is on first bar to the right(i.e. positive), i.e. it’s x coordinate is 1. Thus, the coordinate of point A is (1, 0).
Similarly, for point B note that:
This point is along 2 bar to the right hand side from center on x- axis and 4 bars to the upper side from the center on y- axis, and since each bar is of 1 unit i.e. it’s coordinate is (2, 4).
Similarly, for point C note that
Note that it is corresponding to the 3 bars to the left side of the x -axis from the center and 2 bars down from the center on y- axis, i.e. it’s coordinates are in negative and are:
Now D is on y -axis thus it’s x coordinate of point on y -axis is 0, and it is 2 bars down from the center on y- axis, i.e. y-coordinate is negative.
Thus, coordinate of D is:
Thus, coordinates of given points are:
Chapter P Solutions
PRECALCULUS:GRAPHICAL,...-W/ACCESS
- 6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward
- 1. Consider the differential equation, show all of your work: dy =(y2)(y+1) dx a. Determine the equilibrium solutions for the differential equation. b. Where is the differential equation increasing or decreasing? c. Where are the changes in concavity? d. Suppose that y(0)=0, what is the value of y as t goes to infinity?arrow_forward2. Suppose a LC circuit has the following differential equation: q'+4q=6etcos 4t, q(0) = 1 a. Find the function for q(t), use any method that we have studied in the course. b. What is the transient and the steady-state of the circuit?arrow_forward5. Use variation of parameters to find the general solution to the differential equation: y" - 6y' + 9y=e3x Inxarrow_forward
- Let the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. 5 4 3 2 1 y x 1 2 3 4arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward(14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk. = (a) (4 points) What is the boundary OS? Explain briefly. (b) (4 points) Let F(x, y, z) = (e³+2 - 2y, xe³±² + y, e²+y). Calculate the curl V × F.arrow_forward
- (6 points) Let S be the surface z = 1 − x² - y², x² + y² ≤1. The boundary OS of S is the unit circle x² + y² = 1. Let F(x, y, z) = (x², y², z²). Use the Stokes' Theorem to calculate the line integral Hint: First calculate V x F. Jos F F.ds.arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forwardI need the last answer t=? I did got the answer for the first two this is just homework.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





