ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
2nd Edition
ISBN: 9780393666144
Author: KARTY
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter C, Problem C.8P
Interpretation Introduction

(a)

Interpretation:

The complete IUPAC name of the given molecule is to be written.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has the higher priority. In case of comparison between isotopes, the one having the greater atomic mass gets the higher priority.

If substituents are attached by the same atom, the tiebreaker is applied.

For each substituent, the set of three atoms one bond away from its point of attachment is to be identified.

In each set, arrange the three atoms from the highest to the lowest priority. Compare each set’s highest-priority atom.

If they are different, then the atom that has the higher priority corresponds to the higher-priority substituent.

If the highest-priority atoms from each set are identical, then compare each set’s second highest priority corresponding to the higher priority substituent. If the second-highest-priority atoms from each set are identical, then compare each set’s lowest-priority atom to break the tie.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged clockwise, the configuration is R.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged counterclockwise, the configuration is S.

If the fourth priority substituent is attached by a wedge bond, then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

If the fourth priority substituent is in the plane of the page, then it is switched with the substituent that points away. Then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

When writing the IPUAC name, the R or S designation is written in parenthesis for each asymmetric carbon atom, and hyphens are used to separate those designations from the rest of the IUPAC name. Alternatively, all R and S designations can be placed together at the front of the name.

Interpretation Introduction

(b)

Interpretation:

The complete IUPAC name of the given molecule is to be written.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has the higher priority. In case of comparison between isotopes, the one having the greater atomic mass gets the higher priority.

If substituents are attached by the same atom, the tiebreaker is applied.

For each substituent, the set of three atoms one bond away from its point of attachment is to be identified.

In each set, arrange the three atoms from the highest to the lowest priority. Compare each set’s highest-priority atom.

If they are different, then the atom that has the higher priority corresponds to the higher-priority substituent.

If the highest-priority atoms from each set are identical, then compare each set’s second highest priority corresponding to the higher priority substituent. If the second-highest-priority atoms from each set are identical, then compare each set’s lowest-priority atom to break the tie.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged clockwise, the configuration is R.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged counterclockwise, the configuration is S.

If the fourth priority substituent is attached by a wedge bond, then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

If the fourth priority substituent is in the plane of the page, then it is switched with the substituent that points away. Then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

When writing the IPUAC name, the R or S designation is written in parenthesis for each asymmetric carbon atom, and hyphens are used to separate those designations from the rest of the IUPAC name. Alternatively, all R and S designations can be placed together at the front of the name.

Interpretation Introduction

(c)

Interpretation:

The complete IUPAC name of the given molecule is to be written.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has the higher priority. In case of comparison between isotopes, the one having the greater atomic mass gets the higher priority.

If substituents are attached by the same atom, the tiebreaker is applied.

For each substituent, the set of three atoms one bond away from its point of attachment is to be identified.

In each set, arrange the three atoms from the highest to the lowest priority. Compare each set’s highest-priority atom.

If they are different, then the atom that has the higher priority corresponds to the higher-priority substituent.

If the highest-priority atoms from each set are identical, then compare each set’s second highest priority corresponding to the higher priority substituent. If the second-highest-priority atoms from each set are identical, then compare each set’s lowest-priority atom to break the tie.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged clockwise, the configuration is R.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged counterclockwise, the configuration is S.

If the fourth priority substituent is attached by a wedge bond, then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

If the fourth priority substituent is in the plane of the page, then it is switched with the substituent that points away. Then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

When writing the IPUAC name, the R or S designation is written in parenthesis for each asymmetric carbon atom, and hyphens are used to separate those designations from the rest of the IUPAC name. Alternatively, all R and S designations can be placed together at the front of the name.

Interpretation Introduction

(d)

Interpretation:

The complete IUPAC name of the given molecule is to be written.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has the higher priority. In case of comparison between isotopes, the one having the greater atomic mass gets the higher priority.

If substituents are attached by the same atom, the tiebreaker is applied.

For each substituent, the set of three atoms one bond away from its point of attachment is to be identified.

In each set, arrange the three atoms from the highest to the lowest priority. Compare each set’s highest-priority atom.

If they are different, then the atom that has the higher priority corresponds to the higher-priority substituent.

If the highest-priority atoms from each set are identical, then compare each set’s second highest priority corresponding to the higher priority substituent. If the second-highest-priority atoms from each set are identical, then compare each set’s lowest-priority atom to break the tie.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged clockwise, the configuration is R.

When the fourth priority substituent is pointing away (it is attached by a dash bond) and the first, second, and third priority substituents are arranged counterclockwise, the configuration is S.

If the fourth priority substituent is attached by a wedge bond, then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

If the fourth priority substituent is in the plane of the page, then it is switched with the substituent that points away. Then the clockwise or counterclockwise arrangement of the first, second, and third priority substituents is determined, and that arrangement is reversed before assigning R or S.

When writing the IPUAC name, the R or S designation is written in parenthesis for each asymmetric carbon atom, and hyphens are used to separate those designations from the rest of the IUPAC name.

Blurred answer
Students have asked these similar questions
From this COZY spectrum, how do you know which protons are next to each other?
5. A buffer consists of 0.45 M NH, and 0.25 M NH-CI (PK of NH 474) Calculate the pH of the butter. Ans: 9.52 BAS PH-9.26 +10g (10.95)) 14-4.59 PH=4.52 6. To 500 ml of the buffer on #5 a 0.20 g of sample of NaOH was added a Write the net ionic equation for the reaction which occurs b. Should the pH of the solution increase or decrease sightly? Calculate the pH of the buffer after the addition Ans: 9.54
Explain the inductive effect (+I and -I) in benzene derivatives.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License