
Machine Tool Practices (11th Edition)
11th Edition
ISBN: 9780134893501
Author: Richard R. Kibbe, Roland O. Meyer, Jon Stenerson, Kelly Curran
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter B.9, Problem 3ST
To determine
The tool used for a wheel when on a pedestal type of grinder needs to be sharpened, reshaped, or trued.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For some viscoelastic polymers that are subjected to stress relaxation tests, the stress decays with
time according to
a(t) = a(0) exp(-4)
(15.10)
where σ(t) and o(0) represent the time-dependent and initial (i.e., time = 0) stresses, respectively, and t and T denote
elapsed time and the relaxation time, respectively; T is a time-independent constant characteristic of the material. A
specimen of a viscoelastic polymer whose stress relaxation obeys Equation 15.10 was suddenly pulled in tension to
a measured strain of 0.5; the stress necessary to maintain this constant strain was measured as a function of time.
Determine E (10) for this material if the initial stress level was 3.5 MPa (500 psi), which dropped to 0.5 MPa (70
psi) after 30 s.
For the flows in Examples 11.1 and 11.2, calculate the magnitudes of the Δ V2 / 2 terms omitted in B.E., and compare these with the magnitude of the ℱ terms.
Calculate ℛP.M. in Example 11.2.
Chapter B Solutions
Machine Tool Practices (11th Edition)
Ch. B.1 - List several uses of the arbor press.Ch. B.1 - A newly machined steel shaft with an interference...Ch. B.1 - The ram of an arbor press is loose in its guide...Ch. B.1 - When a bushing is pushed into a bore that is...Ch. B.1 - Prob. 5STCh. B.1 - What difference is there in the way a press fit is...Ch. B.1 - Prior to installing a bushing with the arbor...Ch. B.1 - Name five ways to avoid tool breakage and other...Ch. B.2 - Name two types of bench visesCh. B.2 - Prob. 2ST
Ch. B.2 - How can the finished surface of a part be...Ch. B.2 - Name three things that should never be done to a...Ch. B.2 - How should a vise be Lubricated?Ch. B.2 - Prob. 6STCh. B.2 - What advantage does the lever-jawed wrench offer...Ch. B.2 - Some objects should never be struck with a hard...Ch. B.2 - Why should pipe wrenches never be used on bolts,...Ch. B.2 - What are the two important things to remember...Ch. B.3 - What is the kerf?Ch. B.3 - What is the set on a saw blade?Ch. B.3 - What is the pitch of the hacksaw blade?Ch. B.3 - What determines the selection of a saw blade for a...Ch. B.3 - Hand hacksaw blades fall into two basic...Ch. B.3 - Give four causes that make saw blades dull.Ch. B.3 - Give two reasons why hacksaw blades break.Ch. B.3 - A new hacksaw blade should not be used in a cut...Ch. B.4 - What are the four different cuts found on files?Ch. B.4 - Name four coarseness designations for files.Ch. B.4 - Which of the two kinds of files-single cut or...Ch. B.4 - What are the coarseness designations for needle...Ch. B.4 - Prob. 5STCh. B.4 - What causes a file to get dull?Ch. B.4 - Why should a handle be used on a file?Ch. B.4 - How does the hardness of a workpiece affect the...Ch. B.4 - Should pressure be applied to a file on the return...Ch. B.4 - Why is a round file rotated while it is being...Ch. B.5 - Prob. 1STCh. B.5 - What is the purpose of a starting taper on a...Ch. B.5 - What is the advantage of a spiral flute reamer...Ch. B.5 - How does the shank diameter of a hand reamer...Ch. B.5 - Prob. 5STCh. B.5 - Prob. 6STCh. B.5 - What is the purpose of cutting fluid in reaming?Ch. B.5 - Prob. 8STCh. B.5 - How much reaming allowance is left for hand...Ch. B.5 - If you were repairing the lathe tailstock taper,...Ch. B.6 - What type of tap is used to produce threads that...Ch. B.6 - Prob. 2STCh. B.6 - Prob. 3STCh. B.6 - When is a spiral fluted tap used?Ch. B.6 - How are thread-forming taps different from...Ch. B.6 - How are taper pipe taps identified?Ch. B.6 - Why are finishing and roughing Acme taps used?Ch. B.6 - Why are rake angles varied on taps for different...Ch. B.7 - What kind of tools are used to drive taps when...Ch. B.7 - What is a hand tapper?Ch. B.7 - What is a tapping attachment?Ch. B.7 - Which three factors affect the strength of a...Ch. B.7 - How deep should the usable threads be in a tapped...Ch. B.7 - What causes taps to break while tapping?Ch. B.7 - What causes rough and tom threads?Ch. B.7 - Give three methods of removing broken taps from...Ch. B.8 - What is a die?Ch. B.8 - What tool is used to drive a die?Ch. B.8 - How much adjustment is possible with a round split...Ch. B.8 - What are important points to watch when assembling...Ch. B.8 - Why do dies have a chamfer on the cutting end?Ch. B.8 - Why are cutting fluids used?Ch. B.8 - What diameter should a rod be before being...Ch. B.8 - Why should a rod be chamfered before being...Ch. B.9 - Prob. 1STCh. B.9 - Why should a tool grinder never be used for rough...Ch. B.9 - Prob. 3STCh. B.9 - Prob. 4STCh. B.9 - Prob. 5STCh. B.9 - Prob. 6STCh. B.9 - Prob. 7STCh. B.9 - What is the purpose of the wheel blotter?Ch. B.9 - Prob. 9STCh. B.9 - What does the wheel ring test do?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 22: The superheated steam powers a steam turbine for the production of electrical power. The steam expands in the turbine and at an intermediate expansion pressure (0.1 MPa) a fraction is extracted for a regeneration process in a surface regenerator. The turbine has an efficiency of 90%. It is requested: Define the Power Plant Schematic Analyze the steam power system considering the steam generator system in the attached figure Determine the electrical power generated and the thermal efficiency of the plant Perform an analysis on the power generated and thermal efficiency considering a variation in the steam fractions removed for regeneration ##Data: The steam generator uses biomass from coconut shells to produce 4.5 tons/h of superheated steam; The feedwater returns to the condenser at a temperature of 45°C (point A); Monitoring of the operating conditions in the steam generator indicates that the products of combustion leave the system (point B) at a temperature of 500°C;…arrow_forwardThis is an old practice exam question.arrow_forwardSteam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the pressure at which reheating takes place. Use steam tables. Find: The reheat pressure is psia. (P4)Find thermal efficiencyFind m dotarrow_forward
- Air at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects Determine mass flow rate of the moist air entering at state 2, in kg/min Determine the relative humidity of the exiting stream. Determine the rate of entropy production, in kJ/min.Karrow_forwardAir at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects Determine mass flow rate of the moist air entering at state 2, in kg/min Determine the relative humidity of the exiting stream. Determine the rate of entropy production, in kJ/min.Karrow_forwardAir at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects (a) Determine mass flow rate of the moist air entering at state 2, in kg/min (b) Determine the relative humidity of the exiting stream. (c) Determine the rate of entropy production, in kJ/min.Karrow_forward
- A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiencies of the turbine and compressor are 91% and 80%, respectively, and there is a 50 kPa pressure drop across the combustion chamber. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4. The fluid flow through the cycle is in a clockwise direction from point 1 to 4. Heat Q sub in is given to a component between points 2 and 3 of the cycle. Heat Q sub out is given out by a component between points 1 and 4. An arrow from the turbine labeled as W sub net points to the right. The net work produced per unit mass of air is kJ/kg. The thermal efficiency is %.arrow_forwardSteam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the pressure at which reheating takes place. Use steam tables. The reheat pressure is psia.Find thermal efficieny Find m dotarrow_forwardThis is an old exam practice question.arrow_forward
- As shown in the figure below, moist air at T₁ = 36°C, 1 bar, and 35% relative humidity enters a heat exchanger operating at steady state with a volumetric flow rate of 10 m³/min and is cooled at constant pressure to 22°C. Ignoring kinetic and potential energy effects, determine: (a) the dew point temperature at the inlet, in °C. (b) the mass flow rate of moist air at the exit, in kg/min. (c) the relative humidity at the exit. (d) the rate of heat transfer from the moist air stream, in kW. (AV)1, T1 P₁ = 1 bar 11 = 35% 120 T₂=22°C P2 = 1 bararrow_forwardAir at T₁-24°C, p₁-1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T₂-7°C, p2-1 bar. A single mixed stream exits at T3-17°C, p3-1 bar. Neglect kinetic and potential energy effects Step 1 Your answer is correct. Determine mass flow rate of the moist air entering at state 2, in kg/min. m2 = 2.1 Hint kg/min Using multiple attempts will impact your score. 5% score reduction after attempt 2 Step 2 Determine the relative humidity of the exiting stream. Փ3 = i % Attempts: 1 of 3 usedarrow_forwardA reservoir at 300 ft elevation has a 6-in.-diameter discharge pipe located 50 ft below the surface. The pipe is 600 ft long and drops in elevation to 150 ft where the flow discharges to the atmosphere. The pipe is made of riveted steel with a roughness height of 0.005 ft. Determine the flow rate without a head loss Determine the flow rate with the pipe friction head loss. (hints: Since the velocity is not known for part b and the Reynolds number and friction factor depend on velocity, you will need to iterate to find the solution. A good first guess is the velocity from part (a))arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
HOME SHOP JIGS & FIXTURES PART 1, TYPES OF JIGS & ACCESSORIES AND THE THEORIE BEHIND THE TOOLS; Author: THATLAZYMACHINIST;https://www.youtube.com/watch?v=EXYqi42JimI;License: Standard Youtube License