In Problems 83 - 88 , simplify' by writing each expression as a simple or single fraction reduced to lowest terms and without negative exponents. 2 3 x − 1 1 / 3 − 2 x + 1 1 3 3 x − 1 − 2 / 3 3 3 x − 1 2 / 3
In Problems 83 - 88 , simplify' by writing each expression as a simple or single fraction reduced to lowest terms and without negative exponents. 2 3 x − 1 1 / 3 − 2 x + 1 1 3 3 x − 1 − 2 / 3 3 3 x − 1 2 / 3
Solution Summary: The author calculates the lowest term that is free from the negative exponents of the expression by writing it in simple or single tion.
Keity
x२
1. (i)
Identify which of the following subsets of R2 are open and which
are not.
(a)
A = (2,4) x (1, 2),
(b)
B = (2,4) x {1,2},
(c)
C = (2,4) x R.
Provide a sketch and a brief explanation to each of your answers.
[6 Marks]
(ii)
Give an example of a bounded set in R2 which is not open.
[2 Marks]
(iii)
Give an example of an open set in R2 which is not bounded.
[2 Marks
2.
(i)
Which of the following statements are true? Construct coun-
terexamples for those that are false.
(a)
sequence.
Every bounded sequence (x(n)) nEN C RN has a convergent sub-
(b)
(c)
(d)
Every sequence (x(n)) nEN C RN has a convergent subsequence.
Every convergent sequence (x(n)) nEN C RN is bounded.
Every bounded sequence (x(n)) EN CRN converges.
nЄN
(e)
If a sequence (xn)nEN C RN has a convergent subsequence, then
(xn)nEN is convergent.
[10 Marks]
(ii)
Give an example of a sequence (x(n))nEN CR2 which is located on
the parabola x2 = x², contains infinitely many different points and converges
to the limit x = (2,4).
[5 Marks]
2.
(i) What does it mean to say that a sequence (x(n)) nEN CR2
converges to the limit x E R²?
[1 Mark]
(ii) Prove that if a set ECR2 is closed then every convergent
sequence (x(n))nen in E has its limit in E, that is
(x(n)) CE and x() x
x = E.
[5 Marks]
(iii)
which is located on the parabola x2 = = x
x4, contains a subsequence that
Give an example of an unbounded sequence (r(n)) nEN CR2
(2, 16) and such that x(i)
converges to the limit x = (2, 16) and such that x(i)
#
x() for any i j.
[4 Marks
Chapter A Solutions
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences Plus NEW MyLab Math with Pearson eText -- Access Card Package (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Understanding Fractions, Improper Fractions, and Mixed Numbers; Author: Professor Dave Explains;https://www.youtube.com/watch?v=qyW2mWvvtZ8;License: Standard YouTube License, CC-BY