
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter A6, Problem 39E
To determine
To verify: the
Expert Solution & Answer

Explanation of Solution
Given:
Proof:
To verify,
Take
Differentiate
Hence verified
Conclusion:
Hence the given integration is verified.
Chapter A6 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Ch. A6 - Prob. 1ECh. A6 - Prob. 2ECh. A6 - Prob. 3ECh. A6 - Prob. 4ECh. A6 - Prob. 5ECh. A6 - Prob. 6ECh. A6 - Prob. 7ECh. A6 - Prob. 8ECh. A6 - Prob. 9ECh. A6 - Prob. 10E
Ch. A6 - Prob. 11ECh. A6 - Prob. 12ECh. A6 - Prob. 13ECh. A6 - Prob. 14ECh. A6 - Prob. 15ECh. A6 - Prob. 16ECh. A6 - Prob. 17ECh. A6 - Prob. 18ECh. A6 - Prob. 19ECh. A6 - Prob. 20ECh. A6 - Prob. 21ECh. A6 - Prob. 22ECh. A6 - Prob. 23ECh. A6 - Prob. 24ECh. A6 - Prob. 25ECh. A6 - Prob. 26ECh. A6 - Prob. 27ECh. A6 - Prob. 28ECh. A6 - Prob. 29ECh. A6 - Prob. 30ECh. A6 - Prob. 31ECh. A6 - Prob. 32ECh. A6 - Prob. 33ECh. A6 - Prob. 34ECh. A6 - Prob. 35ECh. A6 - Prob. 36ECh. A6 - Prob. 37ECh. A6 - Prob. 38ECh. A6 - Prob. 39ECh. A6 - Prob. 40ECh. A6 - Prob. 41ECh. A6 - Prob. 42ECh. A6 - Prob. 43ECh. A6 - Prob. 44ECh. A6 - Prob. 45ECh. A6 - Prob. 46ECh. A6 - Prob. 47ECh. A6 - Prob. 48ECh. A6 - Prob. 49ECh. A6 - Prob. 50ECh. A6 - Prob. 51ECh. A6 - Prob. 52ECh. A6 - Prob. 53ECh. A6 - Prob. 54ECh. A6 - Prob. 55ECh. A6 - Prob. 56ECh. A6 - Prob. 57ECh. A6 - Prob. 58ECh. A6 - Prob. 59ECh. A6 - Prob. 60ECh. A6 - Prob. 61ECh. A6 - Prob. 62ECh. A6 - Prob. 63ECh. A6 - Prob. 64ECh. A6 - Prob. 65ECh. A6 - Prob. 66ECh. A6 - Prob. 67ECh. A6 - Prob. 68ECh. A6 - Prob. 69ECh. A6 - Prob. 70ECh. A6 - Prob. 71ECh. A6 - Prob. 72E
Additional Math Textbook Solutions
Find more solutions based on key concepts
IQ Scores. In Exercises 9–12, find the indicated IQ score and round to the nearest whole number. The graphs dep...
Elementary Statistics (13th Edition)
Sixty percent of the students at a certain school wear neither a ring nor a necklace. Twenty percent wear a rin...
A First Course in Probability (10th Edition)
Matching In Exercises 17–20, match the level of confidence c with the appropriate confidence interval. Assume e...
Elementary Statistics: Picturing the World (7th Edition)
In hypothesis testing, the common level of significance is =0.05. Some might argue for a level of significance ...
Basic Business Statistics, Student Value Edition
The equivalent expression of x(y+z) by using the commutative property.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (3) (20 points) Let F(x, y, z) = (y, z, x²z). Define E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}. (a) (2 points) Calculate the divergence V. F. (b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that the triple integral √ (V · F) dV = √ 2²(1. = x²(1 − x² - y²) dA. Earrow_forward(2) (22 points) Let F(x, y, z) = (x sin y, cos y, ―xy). (a) (2 points) Calculate V. F. (b) (6 points) Given a vector field is everywhere defined with V G₁(x, y, z) = * G2(x, y, z) = − G3(x, y, z) = 0. 0 0 F(x, y, z) = (F₁(x, y, z), F₂(x, y, z), F(x, y, z)) that F = 0, let G = (G1, G2, G3) where F₂(x, y, y, t) dt - √ F³(x, t, 0) dt, * F1(x, y, t) dt, t) dt - √ F Calculate G for the vector field F(x, y, z) = (x sin y, cos y, -xy).arrow_forwardEvaluate the following integral over the Region R. (Answer accurate to 2 decimal places). √ √(x + y) A R R = {(x, y) | 25 < x² + y² ≤ 36, x < 0} Hint: The integral and Region is defined in rectangular coordinates.arrow_forward
- Find the volume of the solid that lies under the paraboloid z = 81 - x² - y² and within the cylinder (x − 1)² + y² = 1. A plot of an example of a similar solid is shown below. (Answer accurate to 2 decimal places). Volume using Double Integral Paraboloid & Cylinder -3 Hint: The integral and region is defined in polar coordinates.arrow_forwardEvaluate the following integral over the Region R. (Answer accurate to 2 decimal places). √4(1–2² 4(1 - x² - y²) dA R 3 R = {(r,0) | 0 ≤ r≤ 2,0π ≤0≤¼˜}. Hint: The integral is defined in rectangular coordinates. The Region is defined in polar coordinates.arrow_forwardEvaluate the following integral over the Region R. (Answer accurate to 2 decimal places). R - 1 · {(r,0) | 1 ≤ r≤ 5,½π≤ 0<1π}. Hint: Be sure to convert to Polar coordinates. Use the correct differential for Polar Coordinates.arrow_forward
- Evaluate the following integral over the Region R. (Answer accurate to 2 decimal places). √ √2(x+y) dA R R = {(x, y) | 4 < x² + y² < 25,0 < x} Hint: The integral and Region is defined in rectangular coordinates.arrow_forwardHW: The frame shown in the figure is pinned at A and C. Use moment distribution method, with and without modifications, to draw NFD, SFD, and BMD. B I I 40 kN/m A 3 m 4 marrow_forwardLet the region R be the area enclosed by the function f(x)= = 3x² and g(x) = 4x. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth. y 11 10 9 00 8 7 9 5 4 3 2 1 -1 -1 x 1 2arrow_forward
- Let the region R be the area enclosed by the function f(x) = ex — 1, the horizontal line y = -4 and the vertical lines x = 0 and x = 3. Find the volume of the solid generated when the region R is revolved about the line y = -4. You may use a calculator and round to the nearest thousandth. 20 15 10 5 y I I I | I + -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 -5 I -10 -15 I + I I T I I + -20 I + -25 I I I -30 I 3.5 4 xarrow_forwardplease show all the workarrow_forwardplease show all the workarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Introduction to Integers,Maths - What are integers - English; Author: Mathispower4u;https://www.youtube.com/watch?v=04pURxo-iu0;License: Standard YouTube License, CC-BY
Integers-Middle School Math; Author: MooMooMath and Science;https://www.youtube.com/watch?v=DGWcWtqM_yk;License: Standard YouTube License, CC-BY