(a)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The value of mean and number of degree of freedoms associated with the calculation of the mean needs to be determined.
Concept Introduction :
The mean can be calculated using the following formula:
Or
Here, degree of freedom = N
(a)

Answer to Problem A1.1QAP
For set A −
Mean = 61.43
Degree of freedom = 3
For set B −
Mean = 3.25
Degree of freedom = 6
For set C −
Mean = 12.1
Degree of freedom = 2
For set D −
Mean = 2.65
Degree of freedom = 4
Explanation of Solution
The following formula will be used for the calculation of the mean-
Or
Now the mean value for set A-
Degree of freedom for set A = 3
Mean value for set B-
Degree of freedom for set B = 6
Mean value for set C-
Degree of freedom for set C = 2
Mean value for set D −
Degree for freedom for set D = 4
(b)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The value of standard deviation and number of degree of freedoms associated with the calculation of the standard deviation needs to be determined.
Concept Introduction :
The value of standard deviation can be calculated as follows:
Here,
Degree of freedom =
(b)

Answer to Problem A1.1QAP
For set A −
Standard deviation = 0.11
Degree of freedom = 2
For set B −
Standard deviation = 0.02
Degree of freedom = 5
For set C −
Standard deviation = 0.06
Degree of freedom = 1
For set D −
Standard deviation = 0.21
Degree of freedom = 3
Explanation of Solution
The following formula will be used for the calculation of standard deviation −
For set A-
Samples | ||
1 | 61.25 | 3776.1025 |
2 | 61.33 | 3785.9409 |
3 | 61.12 | 3760.1424 |
Put the values,
Degree of freedom for standard deviation =
For set B-
Samples | ||
1 | 3.27 | 10.6929 |
2 | 3.26 | 10.6276 |
3 | 3.24 | 10.4976 |
4 | 3.24 | 10.4976 |
5 | 3.28 | 10.7584 |
6 | 3.23 | 10.4329 |
Put the values,
Degree of freedom for standard deviation =
For set C-
Samples | ||
1 | 12.06 | 145.4436 |
2 | 12.14 | 147.3796 |
Put the values,
Degree of freedom for standard deviation =
For set D-
Samples | ||
1 | 1.9 | 7.29 |
2 | 1.5 | 5.76 |
3 | 1.6 | 6.76 |
4 | 1.4 | 8.41 |
Put the values,
Degree of freedom for standard deviation =
(c)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The coefficient of variation for each set is to be determined.
Concept Introduction :
The following formula will be used for the calculation of the coefficient of variation-
Here,
s = standard deviation
(c)

Answer to Problem A1.1QAP
The coefficient of variation for set A = 0.17%
The coefficient of variation for set B = 0.61%
The coefficient of variation for set C = 0.49%
The coefficient of variation for set D = 7.9%
Explanation of Solution
For set A −
Given that-
s = 0.11
Put the above value,
For set B −
Given that-
s = 0.02
Put the above value,
For set C −
Given that-
s = 0.06
Put the above value,
For set D −
Given that-
s = 0.21
Put the above value,
(d)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The standard error of mean for each set is to be determined.
Concept Introduction:
The following formula will be used for the calculation of the standard error for the mean-
Here,
Standard deviation = s
Degree of freedom = N
(d)

Answer to Problem A1.1QAP
The standard error for mean for set A = 0.063
The standard error for mean for set B = 0.008
The standard error for mean for set C = 0.042
The standard error for mean for set D = 0.10
Explanation of Solution
For set A-
Given that-
Standard deviation = 0.11
Degree of freedom = 3
Put the above values,
For set B-
Given that-
Standard deviation = 0.02
Degree of freedom = 6
Put the above values,
For set C-
Given that-
Standard deviation = 0.06
Degree of freedom = 2
Put the above values,
For set D-
Given that-
Standard deviation = 0.21
Degree of freedom = 4
Put the above values,
Want to see more full solutions like this?
Chapter A1 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forward
- Ideally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning

