Finite Mathematics for the Managerial, Life, and Social Sciences-Custom Edition
11th Edition
ISBN: 9781305283831
Author: Tan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.CRQ, Problem 3CRQ
Fill in the blanks.
The probabilities in a Markov chain are called
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I. Markov Chains A Markov chain (or process) is one in which
future outcomes are determined by a current state. Future
outcomes are based on probabilities. The probability of
moving to a certain state depends only on the state
previously occupied and does not vary with time. An
example of a Markov chain is the maximum education
achieved by children based on the highest educational level
attained by their parents, where the states are (1) earned
college degree, (2) high school diploma only, (3) elementary
school only. If pj is the probability of moving from state i to
state j, the transition matrix is the m × m matrix
Pi1 P12
Pim
...
P =
LPm1 Pm2
Pmm,
...
Shakira's concerts behave like a Markov chain. If the current concert gets cancelled, then there is an 90% chance that the next concert will be cancelled also. However, if the current concert does not get cancelled, then there is only a 50% chance that the next concert will be cancelled. What is the long-run probability that a concert will not be cancelled?
a. 1/4
b. 1/10
c. 1/6
d. 1/2
e. 5/6
f. None of the others are correct
Shakira's concerts behave like a Markov chain. If the current concert gets cancelled, then there is an
80% chance that the next concert will be cancelled also. However, if the current concert does not
get cancelled, then there is only a 60% chance that the next concert will be cancelled. What is the
long-run probability that a concert will be cancelled?
O 1/4
O None of the others are correct
3/4
2/3
4/5
O 7/10
Chapter 9 Solutions
Finite Mathematics for the Managerial, Life, and Social Sciences-Custom Edition
Ch. 9.1 - What is a finite stochastic process? What can you...Ch. 9.1 - Prob. 2CQCh. 9.1 - Consider a transition matrix T for a Markov chain...Ch. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7E
Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - In Exercises 1-10, determine which of the matrices...Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - In Exercises 1518, find X2 the probability...Ch. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Political Polls: Morris Polling conducted a poll 6...Ch. 9.1 - Commuter Trends: In a large metropolitan area, 20...Ch. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - MARKET SHARE OF AUTO MANUFACTURERES In a study of...Ch. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - In Exercises 29 and 30, determine whether the...Ch. 9.1 - Prob. 30ECh. 9.1 - Prob. 1TECh. 9.1 - Prob. 2TECh. 9.1 - Prob. 3TECh. 9.1 - Prob. 4TECh. 9.2 - Prob. 1CQCh. 9.2 - Prob. 2CQCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - COMMUTER TRENDS Within a large metropolitan area,...Ch. 9.2 - Prob. 19ECh. 9.2 - PROFESSIONAL WOMEN From data compiled over a...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - NETWORK NEWS VIEWERSHIP A television poll was...Ch. 9.2 - Prob. 24ECh. 9.2 - GENETICS In a certain species of roses, a plant...Ch. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 1TECh. 9.2 - Prob. 2TECh. 9.2 - Prob. 3TECh. 9.3 - What is an absorbing stochastic matrix?Ch. 9.3 - Prob. 2CQCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - In Exercises 9-14, rewrite each absorbing...Ch. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - GAME OF CHANCE Refer to Exercise 26. Suppose Diane...Ch. 9.3 - Prob. 28ECh. 9.3 - COLLEGE GRADUATION RATE The registrar of...Ch. 9.3 - Prob. 30ECh. 9.3 - GENETICS Refer to Example 4. If the offspring are...Ch. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.4 - a. What is the maximin strategy for the row player...Ch. 9.4 - Prob. 2CQCh. 9.4 - Prob. 1ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - GAME OF MATCHING FINGERS Robin and Cathy play a...Ch. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - MARKET SHARE: Rolands Barber Shop and Charleys...Ch. 9.4 - In Exercises 24-26, determine whether the...Ch. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.5 - Prob. 1CQCh. 9.5 - Prob. 2CQCh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - In Exercises 1-6, the payoff matrix and strategies...Ch. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - The payoff matrix for a game is [332311121] a....Ch. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - In Exercises 11-16, find the optimal strategies, P...Ch. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - COIN-MATCHING GAME Consider the coin-matching game...Ch. 9.5 - INVESTMENT STRATEGIES As part of their investment...Ch. 9.5 - INVESTMENT STRATEGIES The Maxwells have decided to...Ch. 9.5 - CAMPAIGN STRATEGIES Bella Robinson and Steve...Ch. 9.5 - MARKETING STRATEGIES Two dentists, Lydia Russell...Ch. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.CRQ - Prob. 1CRQCh. 9.CRQ - Prob. 2CRQCh. 9.CRQ - Fill in the blanks. The probabilities in a Markov...Ch. 9.CRQ - Fill in the blanks. A transition matrix associated...Ch. 9.CRQ - Prob. 5CRQCh. 9.CRQ - Prob. 6CRQCh. 9.CRQ - Prob. 7CRQCh. 9.CRQ - Prob. 8CRQCh. 9.CRQ - Prob. 9CRQCh. 9.CRQ - Prob. 10CRQCh. 9.CRE - Prob. 1CRECh. 9.CRE - Prob. 2CRECh. 9.CRE - Prob. 3CRECh. 9.CRE - Prob. 4CRECh. 9.CRE - Prob. 5CRECh. 9.CRE - Prob. 6CRECh. 9.CRE - In Exercises 7-10, determine whether the matrix is...Ch. 9.CRE - Prob. 8CRECh. 9.CRE - Prob. 9CRECh. 9.CRE - Prob. 10CRECh. 9.CRE - In Exercises 11-14, find the steady-state matrix...Ch. 9.CRE - Prob. 12CRECh. 9.CRE - Prob. 13CRECh. 9.CRE - Prob. 14CRECh. 9.CRE - Prob. 15CRECh. 9.CRE - Prob. 16CRECh. 9.CRE - Prob. 17CRECh. 9.CRE - Prob. 18CRECh. 9.CRE - Prob. 19CRECh. 9.CRE - Prob. 20CRECh. 9.CRE - Prob. 21CRECh. 9.CRE - Prob. 22CRECh. 9.CRE - Prob. 23CRECh. 9.CRE - Prob. 24CRECh. 9.CRE - Prob. 25CRECh. 9.CRE - Prob. 26CRECh. 9.CRE - Prob. 27CRECh. 9.CRE - Prob. 28CRECh. 9.CRE - Prob. 29CRECh. 9.CRE - OPTIMIZING DEMAND The management of a divison of...Ch. 9.BMO - The transition matrix for a Markov process is...Ch. 9.BMO - Prob. 2BMOCh. 9.BMO - Prob. 3BMOCh. 9.BMO - Prob. 4BMOCh. 9.BMO - The payoff matrix for a certain game is A=[213234]...Ch. 9.BMO - Prob. 6BMO
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- CAPSTONE Explain how to find the nth state matrix of a Markov chain. Explain how to find the steady state matrix of a Markov chain. What is a regular Markov chain? What is an absorbing Markov chain? How is an absorbing Markov chain different than a regular Markov chain?arrow_forwardSmokers and Non smokers In a population of 10,000, there are 5000 non-smokers, 2500 smokers of one pack or less per day. During any month, there is a 5 probability that a nonsmoker will begin smoking a pack or less per day, and a 2 probability that a nonsmoker will begin smoking more than a pack per day. For smokers who smoke a pack or less per day, there is a 10 probability of quitting and a 10 probability of increasing to more than a pack per day. For smokers who smoke more than a pack per day, there is a 5 probability of quitting and a 10 probability of dropping to a pack or less per day. How many people will be in each group a in 1 month, b in 2 months, and c in 1 year?arrow_forwardConsumer Preference In a population of 100,000 consumers, there are 20,000 users of Brand A, 30,000 users of Brand B, and 50,000 who use neither brand. During any month, a Brand A user has a 20 probability of switching to Brand B and a 5 of not using either brand. A Brand B user has a 15 probability of switching to Brand A and a 10 probability of not using either brand. A nonuser has a 10 probability of purchasing Brand A and a 15 probability of purchasing Brand B. How many people will be in each group a in 1 month, b in 2 months, and c in 18 months?arrow_forward
- can you please do part d and e , please provide explanationsarrow_forwardA system consists of five components, each can be operational or not. Each day one operational component is used and it will fail with probability 20%. Any time there no operational components at the end of a day, maintenance will be performed and all non-operational components will be repaired (with probability 1). The system does not perform any other tasks on the day of repairs. Model the system as a Markov chain Write down equations for determining long-run proportions. Suppose that you are interested in the average number of days that the system is under repair. Explain how you would find it using your model.arrow_forwardDetermine whether the Markov chain with matrix of transition probabilities P is absorbing. Explain.arrow_forward
- Nick takes half-court shots on a basketball court. He is a streaky shooter, so his shot outcomes are not independent. If Nick made his last shot, then he makes his current one with probability a. If Nick missed his last shot, then he makes his current one with probability b, where b < a. Modeling Nick’s sequence of half-court shot outcomes as a Markov chain, what is the long-run probability that he makes a half-court shot?arrow_forwardLinear Algebra pls helparrow_forwardA factory worker will quit with probability 1⁄2 during her first month, with probability 1⁄4 during her second month and with probability 1/8 each month after that. Whenever someone quits, their replacement will start at the beginning of the next month and follow the same pattern. Model this position’s status as a Markov chain. What is the long-run probability of having a new employee on a given month? please provide steps and explanations for answersarrow_forward
- Consider a linear probability model under the Gauss-Markov assumptions withoutassuming homoskedasticity. This is sufficient to identify a causal effect in the model.TrueFalse A problem of the linear probability model is that an OLS estimation of it can generatefitted values that are negative or greater than one.TrueFalse And both.. otherwise don't ansarrow_forwardplz solve the question by using Markov Chain, solve it step by step, and write all the words after the solution plz Question1: In any year in the world there is either economic growth or stagnation. In America, if there is growth for one year, there is a 75% chance of growth next year, and a 35% chance of a recession. If there is a recession for a year, you have a 30% chance of growth and a 70% chance of a recession next year. (a) If the recession is known in 2290, find the probability of growth in 2292. (b) What is the probability of a recession in America in 2360?.arrow_forwardThe quality of wine obtained from a vineyard varies from year to year depending on a combination of factors, some of which are predictable and some which are not. (...) Formulate the Markov chain for wine qualityarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Finite Math: Markov Chain Example - The Gambler's Ruin; Author: Brandon Foltz;https://www.youtube.com/watch?v=afIhgiHVnj0;License: Standard YouTube License, CC-BY
Introduction: MARKOV PROCESS And MARKOV CHAINS // Short Lecture // Linear Algebra; Author: AfterMath;https://www.youtube.com/watch?v=qK-PUTuUSpw;License: Standard Youtube License
Stochastic process and Markov Chain Model | Transition Probability Matrix (TPM); Author: Dr. Harish Garg;https://www.youtube.com/watch?v=sb4jo4P4ZLI;License: Standard YouTube License, CC-BY