Concept explainers
(a)
An exponential function of the form (where for growth and for decay) to model the situation described by considering the following case of exponential growth and decay, “The number of restaurants in a city that had restaurants in increases at a rate of per year.” And also identify both variables in our function.
(b)
A table which shows the value of the quantity for the first units of time (either years, months, weeks, or hours) of growth or decay, by considering the following case of exponential growth and decay, “The number of restaurants in a city that had restaurants in increases at a rate of per year”
(c)
A graph for an exponential function, by considering the following case of exponential growth and decay, “The number of restaurants in a city that had restaurants in increases at a rate of per year”
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
- Examples: Solve the following differential equation using Laplace transform (e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1arrow_forwardExamples: Solve the following differential equation using Laplace transform (a) y" +2y+y=t with y(0) = 0, and y'(0) = 1arrow_forwardTemperature for Sudbury (degrees Celsius) 3. The following table gives the mean monthly temperatures for Sudbury, Ontario and Windsor, Ontario. Each month is represented by the day of the year in the middle of the month. Month Day of Year Temperature for Windsor (degrees Celsius) January 15 -13.7 -4.7 February 45 -11.9 -3.8 March 75 -5.9 2.3 April 106 3.0 8.7 May 136 10.6 14.6 June 167 15.8 20.2 July 197 18.9 22.6 August 228 17.4 22.0 September 259 12.2 17.9 October 289 6.2 11.5 November 320 -1.2 4.8 December 350 -10.1 -1.2 a) Create a scatter plot of temperature vs. day of the year for each city. b) Draw the curve of best fit for each graph. c) Use your graphs to estimate when the temperature increases fastest, for each set of temperature data. Explain how you determined these values. d) Use your graphs to estimate the rate at which the temperature is increasing at the two times from question 3. e) Determine an equation of a sinusoidal function to model the data for each cityarrow_forward
- . Solve the equation for x ; tanh x = 3/5 .arrow_forwardIf is a scalar or invariant, , are vectors then is a mixed tensor of type (2, 1).arrow_forwardProve that the Abomian Method (ABM) and homotopy Method (HPM) are equivalent for solving nonlinear dis Serential equations. What the relationship between AdoMian (ADM) and Dafter Dar Jafari Method.arrow_forward
- What is the relationship between AdoMian decompoition method and homotopy Perturaba tion method with prove?arrow_forwardQuestion 3 [10 marks]. Suppose that X, Y and Z are statistically independent random variables, each of them with a x²(2) distribution. (a) Find the moment generating function of U = X + 3Y + Z. State clearly and justify all steps taken. (b) Calculate the expectation E(U) using the moment generating function.arrow_forwardPlease could you explain why 0.5 was added to each upper limpit of the intervals.Thanksarrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education