Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9781111798789
Author: Dennis O. Wackerly
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.5, Problem 67E

Refer to Exercise 9.66. Suppose that a sample of size n is taken from a normal population with mean μ and variance σ2. Show that i = 1 n Y i , and i = 1 n Y i 2 jointly form minimal sufficient statistics for μ and σ2.

*9.66 The likelihood function L (y1, y2, …, yn|θ) takes on different values depending on the arguments (y1, y2, …, yn). A method for deriving a minimal sufficient statistic developed by Lehmann and Scheffé uses the ratio of the likelihoods evaluated at two points, (x1, x2, …, xn) and (y1, y2, …, yn):

L ( x 1 , x 2 , , x n | θ ) L ( y 1 , y 2 , , y n | θ ) .

Many times it is possible to find a function g (x1, x2, …, xn) such that this ratio is free of the unknown parameter θ if and only if g (x1, x2, …, xn) = g (y1, y2, …, yn). If such a function g can be found, then g (Y1, Y2, …, Yn) is a minimal sufficient statistic for θ.

  1. a Let Y1, Y2, …, Yn be a random sample from a Bernoulli distribution (see Example 9.6 and Exercise 9.65) with p unknown.
    1. i Show that

L ( x 1 , x 2 , , x n | p ) L ( y 1 , y 2 , , y n | p ) = ( p 1 p ) x i y i .

  1. ii Argue that for this ratio to be independent of p, we must have

i = 1 n x i i = 1 n y i = 0 or i = 1 n x i = i = 1 n y i .

  1. iii Using the method of Lehmann and Scheffé, what is a minimal sufficient statistic for p? How does this sufficient statistic compare to the sufficient statistic derived in Example 9.6 by using the factorization criterion?
  2. b Consider the Weibull density discussed in Example 9.7.
  3. i Show that

L ( x 1 , x 2 , , x n | θ ) L ( y 1 , y 2 , , y n | θ ) = ( x 1 x 2 x n y 1 y 2 y n ) exp [ 1 θ ( i = 1 n x i 2 i = 1 n y i 2 ) ] .

  1. ii Argue that i = 1 n Y i 2 minimal sufficient statistic for θ.
Blurred answer
Students have asked these similar questions
A poll before the elections showed that in a given sample 79% of people vote for candidate C. How many people should be interviewed so that the pollsters can be 99% sure that from 75% to 83% of the population will vote for candidate C? Round your answer to the whole number.
Suppose a random sample of 459 married couples found that 307 had two or more personality preferences in common. In another random sample of 471 married couples, it was found that only 31 had no preferences in common. Let p1 be the population proportion of all married couples who have two or more personality preferences in common. Let p2 be the population proportion of all married couples who have no personality preferences in common. Find a95% confidence interval for . Round your answer to three decimal places.
A history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema.  69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. ​

Chapter 9 Solutions

Mathematical Statistics with Applications

Ch. 9.3 - Applet Exercise Refer to Exercises 9.9 and 9.10....Ch. 9.3 - Applet Exercise Refer to Exercise 9.11. What...Ch. 9.3 - Applet Exercise Refer to Exercises 9.99.12. Access...Ch. 9.3 - Applet Exercise Refer to Exercise 9.13. Scroll...Ch. 9.3 - Refer to Exercise 9.3. Show that both 1 and 2 are...Ch. 9.3 - Refer to Exercise 9.5. Is 22 a consistent...Ch. 9.3 - Suppose that X1, X2,, Xn and Y1, Y2,,Yn are...Ch. 9.3 - In Exercise 9.17, suppose that the populations are...Ch. 9.3 - Let Y1, Y2,,Yn denote a random sample from the...Ch. 9.3 - If Y has a binomial distribution with n trials and...Ch. 9.3 - Let Y1, Y2,, Yn be a random sample of size n from...Ch. 9.3 - Refer to Exercise 9.21. Suppose that Y1, Y2,, Yn...Ch. 9.3 - Refer to Exercise 9.21. Suppose that Y1, Y2,, Yn...Ch. 9.3 - Let Y1, Y2, Y3, Yn be independent standard normal...Ch. 9.3 - Suppose that Y1, Y2, , Yn denote a random sample...Ch. 9.3 - Prob. 26ECh. 9.3 - Use the method described in Exercise 9.26 to show...Ch. 9.3 - Let Y1, Y2, , Yn denote a random sample of size n...Ch. 9.3 - Let Y1, Y2, , Yn denote a random sample of size n...Ch. 9.3 - Let Y1, Y2, , Yn be independent random variables,...Ch. 9.3 - Prob. 31ECh. 9.3 - Let Y1, Y2, , Yn denote a random sample from the...Ch. 9.3 - An experimenter wishes to compare the numbers of...Ch. 9.3 - Prob. 34ECh. 9.3 - Let Y1, Y2, be a sequence of random variables with...Ch. 9.3 - Suppose that Y has a binomial distribution based...Ch. 9.4 - Prob. 37ECh. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Prob. 40ECh. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - If Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Prob. 43ECh. 9.4 - Let Y1, Y2, , Yn denote independent and...Ch. 9.4 - Suppose that Y1, Y2, , Yn is a random sample from...Ch. 9.4 - If Y1, Y2,, Yn denote a random sample from an...Ch. 9.4 - Refer to Exercise 9.43. If is known, show that...Ch. 9.4 - Refer to Exercise 9.44. If is known, show that...Ch. 9.4 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 9.4 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 9.4 - Prob. 51ECh. 9.4 - Prob. 52ECh. 9.4 - Prob. 53ECh. 9.4 - Prob. 54ECh. 9.4 - Let Y1, Y2, . . . , Yn denote independent and...Ch. 9.5 - Refer to Exercise 9.38(b). Find an MVUE of 2. 9.38...Ch. 9.5 - Refer to Exercise 9.18. Is the estimator of 2...Ch. 9.5 - Refer to Exercise 9.40. Use i=1nYi2 to find an...Ch. 9.5 - The number of breakdowns Y per day for a certain...Ch. 9.5 - Prob. 60ECh. 9.5 - Refer to Exercise 9.49. Use Y(n) to find an MVUE...Ch. 9.5 - Refer to Exercise 9.51. Find a function of Y(1)...Ch. 9.5 - Prob. 63ECh. 9.5 - Let Y1, Y2, , Yn be a random sample from a normal...Ch. 9.5 - In this exercise, we illustrate the direct use of...Ch. 9.5 - The likelihood function L(y1,y2,,yn|) takes on...Ch. 9.5 - Refer to Exercise 9.66. Suppose that a sample of...Ch. 9.5 - Prob. 68ECh. 9.6 - Prob. 69ECh. 9.6 - Suppose that Y1, Y2, , Yn constitute a random...Ch. 9.6 - If Y1, Y2, , Yn denote a random sample from the...Ch. 9.6 - If Y1, Y2, , Yn denote a random sample from the...Ch. 9.6 - An urn contains black balls and N white balls....Ch. 9.6 - Let Y1, Y2,, Yn constitute a random sample from...Ch. 9.6 - Prob. 75ECh. 9.6 - Let X1, X2, X3, be independent Bernoulli random...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.7 - Suppose that Y1, Y2,, Yn denote a random sample...Ch. 9.7 - Suppose that Y1, Y2, , Yn denote a random sample...Ch. 9.7 - Prob. 82ECh. 9.7 - Suppose that Y1, Y2, , Yn constitute a random...Ch. 9.7 - Prob. 84ECh. 9.7 - Let Y1, Y2,, Yn denote a random sample from the...Ch. 9.7 - Suppose that X1, X2, , Xm, representing yields per...Ch. 9.7 - A random sample of 100 voters selected from a...Ch. 9.7 - Prob. 88ECh. 9.7 - It is known that the probability p of tossing...Ch. 9.7 - A random sample of 100 men produced a total of 25...Ch. 9.7 - Find the MLE of based on a random sample of size...Ch. 9.7 - Prob. 92ECh. 9.7 - Prob. 93ECh. 9.7 - Suppose that is the MLE for a parameter . Let t()...Ch. 9.7 - A random sample of n items is selected from the...Ch. 9.7 - Consider a random sample of size n from a normal...Ch. 9.7 - The geometric probability mass function is given...Ch. 9.8 - Refer to Exercise 9.97. What is the approximate...Ch. 9.8 - Consider the distribution discussed in Example...Ch. 9.8 - Suppose that Y1, Y2, . . . , Yn constitute a...Ch. 9.8 - Let Y1, Y2, . . . , Yn denote a random sample of...Ch. 9.8 - Refer to Exercises 9.97 and 9.98. If a sample of...Ch. 9 - Prob. 103SECh. 9 - Prob. 104SECh. 9 - Refer to Exercise 9.38(b). Under the conditions...Ch. 9 - Prob. 106SECh. 9 - Suppose that a random sample of length-of-life...Ch. 9 - The MLE obtained in Exercise 9.107 is a function...Ch. 9 - Prob. 109SECh. 9 - Refer to Exercise 9.109. a Find the MLE N2 of N. b...Ch. 9 - Refer to Exercise 9.110. Suppose that enemy tanks...Ch. 9 - Let Y1, Y2, . . . , Yn denote a random sample from...
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License