Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996103
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.5, Problem 38E
a.
To determine
To estimate: The growth rate of r using the assumption.
b.
To determine
To find: The value of carrying capacity by determining the logistic equation.
c.
To determine
The time when the U.S. population reaches 95% of the carrying capacity.
d.
To determine
To estimate: The carrying capacity of the given problem.
e.
To determine
To estimate: The carrying capacity of the given problem.
f.
To determine
To comment: The sensitivity of carrying capacity of 35 years population projection.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
. A contagious disease is spreading in a town of 10,000 people. There were 200 infectedpeople when the outbreak was discovered, and the number grew up to 1,000 after one month.Assuming the logistic model for the spread of the disease, find the number of infected peoplethree months after the outbreak.
Assume the carrying capacity of the earth is
11
billion. Use the 1960s peak annual growth rate of
2.1%
and population of
3
billion to predict the base growth rate and current growth rate with a logistic model. Assume a current population of
6.8
billion. How does the predicted growth rate compare to the actual growth rate of about
1.2%
per year?
A nation's population (to the nearest million) was 281 million in 2000 and 311 in 2010. It is projected that the population in 2050 will be 439 million. To construct a
logistic model, both the growth rate and the carrying capacity must be estimated. There are several ways to estimate these parameters. Use parts (a) through (f) to use
one approach.
a. Assume that t = 0 corresponds to 2000 and that the population growth is exponential for the first ten years; that is, between 2000 and 2010, the population is given
by P(t) = P(0) e". Estimate the growth rate r using this assumption.
= (Round to five decimal places as needed.)
b. Write the solution of the logistic equation with the value of r found in part (a). Write any populations in the logistic equation in millions of people.
P(t) =
Use the projected value P(50) = 439 million to find a value of the carrying capacity K.
K= (Type an integer or decimal rounded to the nearest hundredth as needed.)
c. According to the logistic model…
Chapter 9 Solutions
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Ch. 9.1 - What are the orders of the equations in Example 2?...Ch. 9.1 - Prob. 2QCCh. 9.1 - Prob. 3QCCh. 9.1 - Prob. 4QCCh. 9.1 - In Example 7, if the height function were given by...Ch. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - The solution to the initial value problem y(t) = 2...
Ch. 9.1 - Prob. 6ECh. 9.1 - Verifying general solutions Verify that the given...Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10ECh. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Verifying general solutions Verify that the given...Ch. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Verifying solutions of initial value problems...Ch. 9.1 - Prob. 18ECh. 9.1 - Verifying solutions of initial value problems...Ch. 9.1 - Prob. 20ECh. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Prob. 24ECh. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Finding general solutions Find the general...Ch. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - General solutions Find the general solution of the...Ch. 9.1 - General solutions Find the general solution of the...Ch. 9.1 - Prob. 32ECh. 9.1 - Solving initial value problems Solve the following...Ch. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Solving initial value problems Solve the following...Ch. 9.1 - Prob. 38ECh. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Motion in a gravitational field An object is fired...Ch. 9.1 - Prob. 44ECh. 9.1 - Harvesting problems Consider the harvesting...Ch. 9.1 - Harvesting problems Consider the harvesting...Ch. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Prob. 53ECh. 9.1 - Prob. 54ECh. 9.1 - Prob. 55ECh. 9.1 - Prob. 56ECh. 9.2 - Assuming solutions are unique (at most one...Ch. 9.2 - Prob. 2QCCh. 9.2 - Prob. 3QCCh. 9.2 - Prob. 4QCCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 6ECh. 9.2 - Direction fields A differential equation and its...Ch. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Increasing and decreasing solutions Consider the...Ch. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Logistic equations Consider the following logistic...Ch. 9.2 - Logistic equations Consider the following logistic...Ch. 9.2 - Logistic equations Consider the following logistic...Ch. 9.2 - Logistic equations Consider the following logistic...Ch. 9.2 - Two steps of Eulers method For the following...Ch. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.3 - Which of the following equations are separable?...Ch. 9.3 - Prob. 2QCCh. 9.3 - Prob. 3QCCh. 9.3 - Prob. 4QCCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Solving separable equations Find the general...Ch. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Solving separable equations Find the general...Ch. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Solving separable equations Find the general...Ch. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Solving initial value problems Determine whether...Ch. 9.3 - Solving initial value problems Determine whether...Ch. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Solving initial value problems Determine whether...Ch. 9.3 - Prob. 26ECh. 9.3 - Solving initial value problems Determine whether...Ch. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Prob. 30ECh. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Solutions in implicit form Solve the following...Ch. 9.3 - Prob. 36ECh. 9.3 - Prob. 37ECh. 9.3 - Prob. 38ECh. 9.3 - Prob. 39ECh. 9.3 - Prob. 40ECh. 9.3 - Prob. 41ECh. 9.3 - Prob. 42ECh. 9.3 - Prob. 43ECh. 9.3 - Prob. 44ECh. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - Prob. 47ECh. 9.3 - Prob. 48ECh. 9.3 - Prob. 49ECh. 9.3 - Prob. 50ECh. 9.3 - Prob. 51ECh. 9.3 - Prob. 53ECh. 9.3 - Prob. 54ECh. 9.4 - Prob. 1QCCh. 9.4 - Prob. 2QCCh. 9.4 - Prob. 3QCCh. 9.4 - Verify that the solution of the initial value...Ch. 9.4 - Prob. 5QCCh. 9.4 - Prob. 1ECh. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Stability of equilibrium points Find the...Ch. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Loan problems The following initial value problems...Ch. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Newtons Law of Cooling Solve the differential...Ch. 9.4 - Prob. 31ECh. 9.4 - Optimal harvesting rate Let y(t) be the population...Ch. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.4 - Prob. 43ECh. 9.4 - Prob. 44ECh. 9.4 - Prob. 45ECh. 9.4 - Prob. 46ECh. 9.4 - Prob. 47ECh. 9.4 - Prob. 48ECh. 9.5 - Explain why the maximum growth rate for the...Ch. 9.5 - Suppose the tank is filled with a salt solution...Ch. 9.5 - Prob. 3QCCh. 9.5 - Explain how the growth rate function determines...Ch. 9.5 - What is a carrying capacity? Mathematically, how...Ch. 9.5 - Explain how the growth rate function can be...Ch. 9.5 - Prob. 4ECh. 9.5 - Is the differential equation that describes a...Ch. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Describe the behavior of the two populations in a...Ch. 9.5 - Prob. 15ECh. 9.5 - Solving logistic equations Write a logistic...Ch. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - Solving the Gompertz equation Solve the Gompertz...Ch. 9.5 - Solving the Gompertz equation Solve the Gompertz...Ch. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 36ECh. 9.5 - Prob. 37ECh. 9.5 - Prob. 38ECh. 9 - Explain why or why not Determine whether the...Ch. 9 - Prob. 2RECh. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - Prob. 16RECh. 9 - Prob. 17RECh. 9 - Prob. 18RECh. 9 - Prob. 19RECh. 9 - Direction fields The direction field for the...Ch. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Prob. 25RECh. 9 - Logistic growth The population of a rabbit...Ch. 9 - Prob. 27RECh. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Prob. 30RECh. 9 - Prob. 32RECh. 9 - Prob. 33RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.arrow_forwardWhat is the carrying capacity for a population modeled by the logistic equation P(t)=250,0001+499e0.45t ? initial population for the model?arrow_forwardIs carbon dating? Why does it work? Give an example in which carbon dating would be useful.arrow_forward
- With what kind of exponential model would half-life be associated? What role does half-life play in these models?arrow_forwardTo the nearest whole number, what is the initial value of a population modeled by the logistic equation P(t)=1751+6.995e0.68t ? What is the carrying capacity?arrow_forwardEnter the data from Table 2 into a graphing calculator and graph the ranking scatter plot. Determine whetherthe data from the table would likely represent a function that is linear, exponential, or logarithmic.arrow_forward
- Suppose that a population follows a logistic growth model. The population in the first year is 21.7 thousand. In the second year the population has increased by 54 hundred. In the third year, the population has increased by 17 hundred. Find the carrying capacity of the population.arrow_forwardIn a city of half a million, there are initially 200 cases of a particularly virulent strain of flu. The Centers for Disease Control and Prevention in Atlanta claims that the cumulative number of infections of this flu strain will increase by 40% per week if there are no limiting factors. Make a logistic model of the potential cumulative number of cases of flu as a function of weeks from the initial outbreak, and determine how long it will be before 100,000 people are infected. (Round your answer to two decimal places.) _______weeksarrow_forwardThe population of the United States has grown at different rates over ten-year increments as shown by the following table. Year Population of U.S. 123.1 million 132.1 million 1930 1940 1950 152.3 million 1960 180.7 million If the maximum supportable population of the U.S. is 600 million people, use the logistic model to predict the population (in millions of people) of the U.S. in 2015 by using the following years as data points. (Round your answers to one decimal place.) (a) using 1930 and 1940 as data points 214.5 x million people (b) using 1950 and 1960 as data points 430.7 x million people Compare/contrast/explain the different results. The growth rate from part (a) is smaller than Ⓒ the growth rate from part (b).arrow_forward
- I am having a hard time setting this question up for economics. The manager of Collins Import Autos believes the number of cars sold in a day (Q) depends on two factors: (1) the number of hours the dealership is open (H) and (2) the number of salespersons working that day(S). After collecting data for two months (53 days), the manager estimates the following log-linear model: Q = aHbSc a. Explain how to transform the log-linear model into a linear form that can be estimated using multiple regression analysis. The computer output for the multiple regression analysis is shown below: Dependent Variable: LNQ R-Square: 0.5452 F-Ratio:29.97 P-Value on F: 0.0001 Observations: 53 Variable: Parameter Estimate Standard Error TRatio PValue Intercept: 0.9162 0.2413 3.80 0.0004 lnH 0.3517 0.1021 3.44 0.0012 lnS 0.2550 0.0785 3.25 0.0021 b. How do you interpret coefficients b and c? If the dealership increases the number of salesperson by 20 percent, what will be the percentage increase in daily…arrow_forwardPlease answer fast a population of 400 African zebra exhibits logistic growth. If maximum number of zebras in the population is 1600 zebras and over the year there has been 30 births and 10 deaths and no immigration or emigration. What is the population growth rate for the population? a. 6 individuals/year b. 10 individuals/year c. 12 individuals/year d. 15 individuals/yeararrow_forwardThe yield of maize is largely dependent on the amount of rainfall. If an agro-allied industry, planning for bumper harvest of the produce approached you (as an engineer) for advice on it planning strategy. What advice will you give for the next planting year given previous yields of maize on the farm in the last 10 years, as shown in Table below? 2015 2008 3.2 4.5 Year 2007 2009 2010 2011 2012 2013 2014 2016 Yield (tonnes/ha) 3.6 5.6 3.8 5.4 1.9 4.7 2.8 3.8 4.3 2.0 Amount of daily Rainfall (mm) 3.2 3.5 5.2 2.8 5.5 5.8 5.3 6.6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY