
Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The
b. The differential equation y′y = 2t2 is first-order, linear, and separable.
c. The function y = t + 1/t satisfies the initial value problem ty′ + y = 2t, y(1) = 2.
d. The direction field for the differential equation y′(t) = t + y(t) is plotted in the ty-plane.
e. Euler’s method gives the exact solution to the initial value problem y′ = ty2, y(0) = 3 on the interval [0, a] provided a is not too large.
a.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The statement is the differential equation is first order, linear, and separable.
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
The function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is linear.
In the equation
But here the equation is not separable.
Therefore, the equation is in first order, linear but not separable.
Thus, the statement is false.
b.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
Here, the function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is not linear.
In the equation
But here the equation is separable.
Therefore, the equation is in first order, separable but not linear.
Thus, the statement is False.
c.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The given differential equation is
The initial value problem is
Take derivative on both sides in
Substitute the value of
Therefore, the function
Thus, the statement is true.
d.

Whether the direction field for the differential equation
Answer to Problem 1RE
True, the direction field for the differential equation
Explanation of Solution
The differential equation is
The equation is in first order
So, the notation
The differential equation at each point
A direction field is a picture that shows the slope of the solution at
Therefore the direction field for the differential equation
e.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The carry capacity either greater than or less than the value predicted by the model.
The given initial value problem is
Direction fields are the basis for many computer based methods for approximating solutions of a differential equation.
The exact solution of the initial value problem at grid points is
Which is generally unknown unless solve the original differential equation.
The goal is to compute a set of approximations to the exact solution at the grid points.
Therefore, the given assumption is false Euler method gives approximate solution not exact solution.
Thus, the statement is false.
Want to see more full solutions like this?
Chapter 9 Solutions
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
- Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- 5. For the function y-x³-3x²-1, use derivatives to: (a) determine the intervals of increase and decrease. (b) determine the local (relative) maxima and minima. (e) determine the intervals of concavity. (d) determine the points of inflection. (e) sketch the graph with the above information indicated on the graph.arrow_forwardCan you solve this 2 question numerical methodarrow_forward1. Estimate the area under the graph of f(x)-25-x from x=0 to x=5 using 5 approximating rectangles Using: (A) right endpoints. (B) left endpoints.arrow_forward
- 9. Use fundamental theorem of calculus to find the derivative d a) *dt sin(x) b)(x)√1-2 dtarrow_forward3. Evaluate the definite integral: a) √66x²+8dx b) x dx c) f*(2e* - 2)dx d) √√9-x² e) (2-5x)dx f) cos(x)dx 8)²₁₂√4-x2 h) f7dx i) f² 6xdx j) ²₂(4x+3)dxarrow_forward2. Consider the integral √(2x+1)dx (a) Find the Riemann sum for this integral using right endpoints and n-4. (b) Find the Riemann sum for this same integral, using left endpoints and n=4arrow_forward
- Problem 11 (a) A tank is discharging water through an orifice at a depth of T meter below the surface of the water whose area is A m². The following are the values of a for the corresponding values of A: A 1.257 1.390 x 1.50 1.65 1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 Using the formula -3.0 (0.018)T = dx. calculate T, the time in seconds for the level of the water to drop from 3.0 m to 1.5 m above the orifice. (b) The velocity of a train which starts from rest is given by the fol- lowing table, the time being reckoned in minutes from the start and the speed in km/hour: | † (minutes) |2|4 6 8 10 12 14 16 18 20 v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance ran in 20 minutes.arrow_forwardX Solve numerically: = 0,95 In xarrow_forwardX Solve numerically: = 0,95 In xarrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
