Calculus, Early Transcendentals
9th Edition
ISBN: 9781337613927
Author: Stewart
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.5, Problem 32E
(a)
To determine
To find: The value of I (t)
(b)
To determine
To find: The current after 0.1 seconds.
(c)
To determine
To sketch: The graph of the current function.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(4) (8 points)
(a) (2 points) Write down a normal vector n for the plane P given by the equation
x+2y+z+4=0.
(b) (4 points) Find two vectors v, w in the plane P that are not parallel.
(c) (2 points) Using your answers to part (b), write down a parametrization r: R² —
R3 of the plane P.
(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3
and 2x + z = 3. Then determine a parametrization of the intersection line of the two
planes.
(3) (6 points)
(a) (4 points) Find all vectors u in the yz-plane that have magnitude [u
also are at a 45° angle with the vector j = (0, 1,0).
= 1 and
(b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an
equation of the plane through (0,0,0) that has u as its normal.
Chapter 9 Solutions
Calculus, Early Transcendentals
Ch. 9.1 - Write a differential equation that models the...Ch. 9.1 - Write a differential equation that models the...Ch. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Determine whether the given function is a solution...Ch. 9.1 - Determine whether the given function is a solution...Ch. 9.1 - Prob. 9ECh. 9.1 - Prob. 12ECh. 9.1 - Show that the given function is a solution of the...
Ch. 9.1 - Prob. 14ECh. 9.1 - (a) For what values of r does the function y = erx...Ch. 9.1 - (a) For what values of k does the function y = cos...Ch. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - (a) Show that every member of the family of...Ch. 9.1 - (a) What can you say about a solution of the...Ch. 9.1 - (a) What can you say about the graph of a solution...Ch. 9.1 - A population is modeled by the differential...Ch. 9.1 - The Fitzhugh-Nagumo model for the electrical...Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - The function with the given graph is a solution of...Ch. 9.1 - Match the differential equations with the solution...Ch. 9.1 - Suppose you have just poured a cup of freshly...Ch. 9.1 - Psychologists interested in learning theory study...Ch. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Differential equations have been used extensively...Ch. 9.2 - A direction field for the differential equation y'...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Prob. 7ECh. 9.2 - Use the direction field labeled III (above) to...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - (a) Use Eulers method with each of the following...Ch. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Use Eulers method with step size 0.5 to compute...Ch. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - (a) Use Eulers method with step size 0.2 to...Ch. 9.2 - The figure shows a circuit containing an...Ch. 9.3 - Solve the differential equation. 1. dydx=3x2y2Ch. 9.3 - Solve the differential equation. 2. dydx=xy4Ch. 9.3 - Solve the differential equation. 2. dydx=xyCh. 9.3 - Solve the differential equation. 4. xy=y+3Ch. 9.3 - Solve the differential equation. 3. xyy=x2+1Ch. 9.3 - Solve the differential equation. 4. y+xey=0Ch. 9.3 - Solve the differential equation. 5. (ey1)y=2+cosxCh. 9.3 - Solve the differential equation. 8. dydx=2xy2+1Ch. 9.3 - Solve the differential equation. 9. dpdt=t2pp+t21Ch. 9.3 - Solve the differential equation. 10. dzdt+et+z=0Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Prob. 15ECh. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Find the function f such that f(x) = xf(x) x and...Ch. 9.3 - Solve the differential equation y = x + y by...Ch. 9.3 - Solve the differential equation xy = y + xey/x by...Ch. 9.3 - (a) Solve the differential equation y=2x1y2. (b)...Ch. 9.3 - Solve the equation eyy + cos x = 0 and graph...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find a function f such that f(3) = 2 and (t2 +...Ch. 9.3 - Solve the initial-value problem in Exercise 9.2.27...Ch. 9.3 - In Exercise 9.2.28 we discussed a differential...Ch. 9.3 - In an elementary chemical reaction, single...Ch. 9.3 - A sphere with radius 1 m has temperature 15C. It...Ch. 9.3 - A glucose solution is administered intravenously...Ch. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - A tank contains 1000 L of brine with 15 kg of...Ch. 9.3 - The air in a room with volume 180 m3 contains...Ch. 9.3 - A vat with 500 gallons of beer contains 4% alcohol...Ch. 9.3 - A tank contains 1000 L of pure water. Brine that...Ch. 9.3 - An object of mass m is moving horizontally through...Ch. 9.3 - A model for tumor growth is given by the Gompertz...Ch. 9.3 - Prob. 1APCh. 9.3 - Prob. 2APCh. 9.4 - A population grows according to the given logistic...Ch. 9.4 - A population grows according to the given logistic...Ch. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Suppose a population grows according to a logistic...Ch. 9.4 - The population of the world was about 6.1 billion...Ch. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - (a) Show that if P satisfies the logistic equation...Ch. 9.4 - For a fixed value of M (say M = 10), the family of...Ch. 9.4 - Consider a population P = P(t) with constant...Ch. 9.4 - Prob. 21ECh. 9.4 - In a seasonal-growth model, a periodic function of...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Solve the differential equation. 5. y' + y = 1Ch. 9.5 - Solve the differential equation. 6. y' y = exCh. 9.5 - Solve the differential equation. 7. y' = x yCh. 9.5 - Solve the differential equation. 8. 4x3y + x4y' =...Ch. 9.5 - Solve the differential equation. 9. xy+y=xCh. 9.5 - Solve the differential equation. 10. 2xy+y=2xCh. 9.5 - Solve the differential equation. 11. xy2y=x2,x0Ch. 9.5 - Solve the differential equation. 12. y3x2y=x2Ch. 9.5 - Solve the differential equation. 13....Ch. 9.5 - Solve the differential equation. 14....Ch. 9.5 - Solve the differential equation. 15. y+ycosx=xCh. 9.5 - Solve the differential equation. 16. y+2xy=x3ex2Ch. 9.5 - Solve the initial-value problem. 17....Ch. 9.5 - Solve the initial-value problem. 18....Ch. 9.5 - Solve the initial-value problem. 15....Ch. 9.5 - Solve the initial-value problem. 16....Ch. 9.5 - Solve the initial-value problem. 17....Ch. 9.5 - Solve the initial-value problem. 18....Ch. 9.5 - Solve the initial-value problem. 19....Ch. 9.5 - Solve the initial-value problem. 20....Ch. 9.5 - Solve the differential equation and use a...Ch. 9.5 - Prob. 26ECh. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Solve the second-order equation xy" + 2y' = 12x2...Ch. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - The figure shows a circuit containing an...Ch. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - A tank with a capacity of 400 L is full of a...Ch. 9.5 - An object with mass m is dropped from rest and we...Ch. 9.5 - Prob. 40ECh. 9.5 - Show that the substitution z = 1/P transforms the...Ch. 9.5 - Prob. 42ECh. 9.6 - For each predator-prey system, determine which of...Ch. 9.6 - Each system of differential equations is a model...Ch. 9.6 - The system of differential equations...Ch. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Graphs of populations of two species are shown....Ch. 9.6 - Populations of aphids and ladybugs are modeled by...Ch. 9.6 - Prob. 11ECh. 9 - (a) What is a differential equation? (b) What is...Ch. 9 - What can you say about the solutions of the...Ch. 9 - What is a direction field for the differential...Ch. 9 - Explain how Euler's method works.Ch. 9 - What is a separable differential equation? How do...Ch. 9 - What is a first-order linear differential...Ch. 9 - (a) Write a differential equation that expresses...Ch. 9 - (a) Write the logistic differential equation. (b)...Ch. 9 - (a) Write Lotka-Volterra equations to model...Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 7TFQCh. 9 - Determine whether the statement is true or false....Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Sketch a direction field for the differential...Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Use Euler's method with step size 0.2 to...Ch. 9 - Solve the differential equation. 5. y=xesinxycosxCh. 9 - Solve the differential equation. 6. dxdy=1t+xtxCh. 9 - Solve the differential equation. 7. 2yey2y=2x+3xCh. 9 - Solve the differential equation. 8. x2yy=2x3e1/xCh. 9 - Solve the initial-value problem. 9....Ch. 9 - Solve the initial-value problem. 10. (1 + cos x)...Ch. 9 - Solve the initial-value problem. 11. xy' y = x ln...Ch. 9 - Solve the initial-value problem y' = 3x2ey, y(0) =...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - (a) Write the solution of the initial-value...Ch. 9 - The von Bertalanffy growth model is used to...Ch. 9 - A tank contains 100 L of pure water. Brine that...Ch. 9 - One model for the spread of an epidemic is that...Ch. 9 - The Brentano-Stevens Law in psychology models the...Ch. 9 - The transport of a substance across a capillary...Ch. 9 - Populations of birds and insects are modeled by...Ch. 9 - Suppose the model of Exercise 22 is replaced by...Ch. 9 - Barbara weighs 60 kg and is on a diet of 1600...Ch. 9 - Find all functions f such that f' is continuous...Ch. 9 - A student forgot the Product Rule for...Ch. 9 - Let f be a function with the property that f(0) =...Ch. 9 - Find all functions f that satisfy the equation...Ch. 9 - Find the curve y = f(x) such that f(x) 0, f(0) =...Ch. 9 - A subtangent is a portion of the x-axis that lies...Ch. 9 - A peach pie is taken out of the oven at 5:00 pm....Ch. 9 - Snow began to fall during the morning of February...Ch. 9 - (a) Suppose that the dog in Problem 9 runs twice...Ch. 9 - A planning engineer for a new alum plant must...Ch. 9 - Find the curve that passes through the point (3,...Ch. 9 - Recall that the normal line to a curve at a point...Ch. 9 - Find all curves with the properly that if the...Ch. 9 - Find all curves with the property that if a line...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (1) (4 points) Give a parametrization c: R R³ of the line through the points P = (1,0,-1) and Q = (-2, 0, 1).arrow_forward4. Consider the initial value problem y' = 3x(y-1) 1/3, y(xo) = yo. (a) For what points (co, yo) does the IVP have a solution? (b) For what points (xo, yo) does the IVP have a unique solution on some open interval that contains 20? (c) Solve the IVP y' = 3x(y-1) 1/3, y(0) = 9 and determine the largest open interval on which this solution is unique.arrow_forwardFind the limit. (If the limit is infinite, enter 'oo' or '-o', as appropriate. If the limit does not otherwise exist, enter DNE.) lim X→ ∞ (✓ 81x2 - 81x + x 9x)arrow_forward
- 2) Compute the following anti-derivative. √1x4 dxarrow_forwardQuestion 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] =…arrow_forward3) Find the volume of the solid that lies inside both the sphere x² + y² + z² cylinder x²+y² = 1. = 4 and thearrow_forward
- 1) Compute the following limit. lim x-0 2 cos(x) 2x² - x4arrow_forwardy = f(x) b C The graph of y = f(x) is shown in the figure above. On which of the following intervals are dy > 0 and dx d²y dx2 <0? I. aarrow_forward3 2 1 y O a The graph of the function f is shown in the figure above. Which of the following statements about f is true? о limb f(x) = 2 Olima f(x) = 2 о lima f (x) = lim x →b f(x) → f (x) = 1 limb. lima f(x) does not existarrow_forwardQuestion 1 (1pt). The graph below shows the velocity (in m/s) of an electric autonomous vehicle moving along a straight track. At t = 0 the vehicle is at the charging station. 1 8 10 12 0 2 4 6 (a) How far is the vehicle from the charging station when t = 2, 4, 6, 8, 10, 12? (b) At what times is the vehicle farthest from the charging station? (c) What is the total distance traveled by the vehicle?arrow_forwardQuestion 2 (1pt). Evaluate the following (definite and indefinite) integrals (a) / (e² + ½) dx (b) S (3u 2)(u+1)du (c) [ cos³ (9) sin(9)do .3 (d) L³ (₂ + 1 dzarrow_forward= Question 4 (5pt): The Orchard Problem. Below is the graph y f(t) of the annual harvest (assumed continuous) in kg/year from my cranapple orchard t years after planting. The trees take about 25 years to get established, and from that point on, for the next 25 years, they give a fairly good yield. But after 50 years, age and disease are taking their toll, and the annual yield is falling off. 40 35 30 。 ៣៩ ថា8 8 8 8 6 25 20 15 10 y 5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 The orchard problem is this: when should the orchard be cut down and re- planted, thus starting the cycle again? What you want to do is to maximize your average harvest per year over a full cycle. Of course there are costs to cutting the orchard down and replanting, but it turns out that we can ignore these. The first cost is the time it takes to cut the trees down and replant but we assume that this can effectively be done in a week, and the loss of time is negligible. Secondly there is the cost of the labour to cut…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry - Harmonic Motion - Equation Setup; Author: David Hays;https://www.youtube.com/watch?v=BPrZnn3DJ6Q;License: Standard YouTube License, CC-BY
Simple Harmonic Motion - An introduction : ExamSolutions Maths Revision; Author: ExamSolutions;https://www.youtube.com/watch?v=tH2vldyP5OE;License: Standard YouTube License, CC-BY