Calculus, Early Transcendentals
9th Edition
ISBN: 9781337613927
Author: Stewart
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 8CC
(a) Write the logistic differential equation.
(b) Under what circumstances is this an appropriate model for population growth?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 9 Solutions
Calculus, Early Transcendentals
Ch. 9.1 - Write a differential equation that models the...Ch. 9.1 - Write a differential equation that models the...Ch. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Determine whether the given function is a solution...Ch. 9.1 - Determine whether the given function is a solution...Ch. 9.1 - Prob. 9ECh. 9.1 - Prob. 12ECh. 9.1 - Show that the given function is a solution of the...
Ch. 9.1 - Prob. 14ECh. 9.1 - (a) For what values of r does the function y = erx...Ch. 9.1 - (a) For what values of k does the function y = cos...Ch. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - (a) Show that every member of the family of...Ch. 9.1 - (a) What can you say about a solution of the...Ch. 9.1 - (a) What can you say about the graph of a solution...Ch. 9.1 - A population is modeled by the differential...Ch. 9.1 - The Fitzhugh-Nagumo model for the electrical...Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - The function with the given graph is a solution of...Ch. 9.1 - Match the differential equations with the solution...Ch. 9.1 - Suppose you have just poured a cup of freshly...Ch. 9.1 - Psychologists interested in learning theory study...Ch. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Differential equations have been used extensively...Ch. 9.2 - A direction field for the differential equation y'...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Prob. 7ECh. 9.2 - Use the direction field labeled III (above) to...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - (a) Use Eulers method with each of the following...Ch. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Use Eulers method with step size 0.5 to compute...Ch. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - (a) Use Eulers method with step size 0.2 to...Ch. 9.2 - The figure shows a circuit containing an...Ch. 9.3 - Solve the differential equation. 1. dydx=3x2y2Ch. 9.3 - Solve the differential equation. 2. dydx=xy4Ch. 9.3 - Solve the differential equation. 2. dydx=xyCh. 9.3 - Solve the differential equation. 4. xy=y+3Ch. 9.3 - Solve the differential equation. 3. xyy=x2+1Ch. 9.3 - Solve the differential equation. 4. y+xey=0Ch. 9.3 - Solve the differential equation. 5. (ey1)y=2+cosxCh. 9.3 - Solve the differential equation. 8. dydx=2xy2+1Ch. 9.3 - Solve the differential equation. 9. dpdt=t2pp+t21Ch. 9.3 - Solve the differential equation. 10. dzdt+et+z=0Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Prob. 15ECh. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Find the function f such that f(x) = xf(x) x and...Ch. 9.3 - Solve the differential equation y = x + y by...Ch. 9.3 - Solve the differential equation xy = y + xey/x by...Ch. 9.3 - (a) Solve the differential equation y=2x1y2. (b)...Ch. 9.3 - Solve the equation eyy + cos x = 0 and graph...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find a function f such that f(3) = 2 and (t2 +...Ch. 9.3 - Solve the initial-value problem in Exercise 9.2.27...Ch. 9.3 - In Exercise 9.2.28 we discussed a differential...Ch. 9.3 - In an elementary chemical reaction, single...Ch. 9.3 - A sphere with radius 1 m has temperature 15C. It...Ch. 9.3 - A glucose solution is administered intravenously...Ch. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - A tank contains 1000 L of brine with 15 kg of...Ch. 9.3 - The air in a room with volume 180 m3 contains...Ch. 9.3 - A vat with 500 gallons of beer contains 4% alcohol...Ch. 9.3 - A tank contains 1000 L of pure water. Brine that...Ch. 9.3 - An object of mass m is moving horizontally through...Ch. 9.3 - A model for tumor growth is given by the Gompertz...Ch. 9.3 - Prob. 1APCh. 9.3 - Prob. 2APCh. 9.4 - A population grows according to the given logistic...Ch. 9.4 - A population grows according to the given logistic...Ch. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Suppose a population grows according to a logistic...Ch. 9.4 - The population of the world was about 6.1 billion...Ch. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - (a) Show that if P satisfies the logistic equation...Ch. 9.4 - For a fixed value of M (say M = 10), the family of...Ch. 9.4 - Consider a population P = P(t) with constant...Ch. 9.4 - Prob. 21ECh. 9.4 - In a seasonal-growth model, a periodic function of...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Solve the differential equation. 5. y' + y = 1Ch. 9.5 - Solve the differential equation. 6. y' y = exCh. 9.5 - Solve the differential equation. 7. y' = x yCh. 9.5 - Solve the differential equation. 8. 4x3y + x4y' =...Ch. 9.5 - Solve the differential equation. 9. xy+y=xCh. 9.5 - Solve the differential equation. 10. 2xy+y=2xCh. 9.5 - Solve the differential equation. 11. xy2y=x2,x0Ch. 9.5 - Solve the differential equation. 12. y3x2y=x2Ch. 9.5 - Solve the differential equation. 13....Ch. 9.5 - Solve the differential equation. 14....Ch. 9.5 - Solve the differential equation. 15. y+ycosx=xCh. 9.5 - Solve the differential equation. 16. y+2xy=x3ex2Ch. 9.5 - Solve the initial-value problem. 17....Ch. 9.5 - Solve the initial-value problem. 18....Ch. 9.5 - Solve the initial-value problem. 15....Ch. 9.5 - Solve the initial-value problem. 16....Ch. 9.5 - Solve the initial-value problem. 17....Ch. 9.5 - Solve the initial-value problem. 18....Ch. 9.5 - Solve the initial-value problem. 19....Ch. 9.5 - Solve the initial-value problem. 20....Ch. 9.5 - Solve the differential equation and use a...Ch. 9.5 - Prob. 26ECh. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Bernoulli Differential Equations A Bernoulli...Ch. 9.5 - Solve the second-order equation xy" + 2y' = 12x2...Ch. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - The figure shows a circuit containing an...Ch. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - A tank with a capacity of 400 L is full of a...Ch. 9.5 - An object with mass m is dropped from rest and we...Ch. 9.5 - Prob. 40ECh. 9.5 - Show that the substitution z = 1/P transforms the...Ch. 9.5 - Prob. 42ECh. 9.6 - For each predator-prey system, determine which of...Ch. 9.6 - Each system of differential equations is a model...Ch. 9.6 - The system of differential equations...Ch. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Graphs of populations of two species are shown....Ch. 9.6 - Populations of aphids and ladybugs are modeled by...Ch. 9.6 - Prob. 11ECh. 9 - (a) What is a differential equation? (b) What is...Ch. 9 - What can you say about the solutions of the...Ch. 9 - What is a direction field for the differential...Ch. 9 - Explain how Euler's method works.Ch. 9 - What is a separable differential equation? How do...Ch. 9 - What is a first-order linear differential...Ch. 9 - (a) Write a differential equation that expresses...Ch. 9 - (a) Write the logistic differential equation. (b)...Ch. 9 - (a) Write Lotka-Volterra equations to model...Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 7TFQCh. 9 - Determine whether the statement is true or false....Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Sketch a direction field for the differential...Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Use Euler's method with step size 0.2 to...Ch. 9 - Solve the differential equation. 5. y=xesinxycosxCh. 9 - Solve the differential equation. 6. dxdy=1t+xtxCh. 9 - Solve the differential equation. 7. 2yey2y=2x+3xCh. 9 - Solve the differential equation. 8. x2yy=2x3e1/xCh. 9 - Solve the initial-value problem. 9....Ch. 9 - Solve the initial-value problem. 10. (1 + cos x)...Ch. 9 - Solve the initial-value problem. 11. xy' y = x ln...Ch. 9 - Solve the initial-value problem y' = 3x2ey, y(0) =...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - (a) Write the solution of the initial-value...Ch. 9 - The von Bertalanffy growth model is used to...Ch. 9 - A tank contains 100 L of pure water. Brine that...Ch. 9 - One model for the spread of an epidemic is that...Ch. 9 - The Brentano-Stevens Law in psychology models the...Ch. 9 - The transport of a substance across a capillary...Ch. 9 - Populations of birds and insects are modeled by...Ch. 9 - Suppose the model of Exercise 22 is replaced by...Ch. 9 - Barbara weighs 60 kg and is on a diet of 1600...Ch. 9 - Find all functions f such that f' is continuous...Ch. 9 - A student forgot the Product Rule for...Ch. 9 - Let f be a function with the property that f(0) =...Ch. 9 - Find all functions f that satisfy the equation...Ch. 9 - Find the curve y = f(x) such that f(x) 0, f(0) =...Ch. 9 - A subtangent is a portion of the x-axis that lies...Ch. 9 - A peach pie is taken out of the oven at 5:00 pm....Ch. 9 - Snow began to fall during the morning of February...Ch. 9 - (a) Suppose that the dog in Problem 9 runs twice...Ch. 9 - A planning engineer for a new alum plant must...Ch. 9 - Find the curve that passes through the point (3,...Ch. 9 - Recall that the normal line to a curve at a point...Ch. 9 - Find all curves with the properly that if the...Ch. 9 - Find all curves with the property that if a line...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning



Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY