Engineering Mechanics: Statics
13th Edition
ISBN: 9780132915540
Author: Russell C. Hibbeler
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.5, Problem 121P
For the condition of high tide shown, determine the horizontal reactions developed at the hinge C and stop block D. The length of the gate is 6 m and its height is 4 m ρw = 1.0 Mg/m3.
Prob. 9-120
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
9-127. The 2-m-wide rectangular gate is pinned at its
center A and is prevented from rotating by the block at B.
Determine the reactions at these supports due to hydrostatic
pressure. pw = 1.0 Mg/m³.
.09
sbuning
A.
VRDC
Pr
6
9-130. The semicircular -
Determine the resultant
components that the wat
pipe per foot of pipe leng
1.5 m
1.5 m
The gate AB is 8 m wide. Determine the hori-
zontal and vertical components of force acting on the
pin at B and the vertical reaction at the smooth support
A. P 1.0 Mg/m³.
m
Prob. 9-119
5 m
4 m
A large vertical dam in the shape of a symmetric trapezoid has a height of 30 m, a width of 20 m at its base, and a width of 40 m at the top (as shown). What is the total force on the face of the dam when the reservoir is full?
Chapter 9 Solutions
Engineering Mechanics: Statics
Ch. 9.1 - Determine the centroid (x,y) of the shaded area....Ch. 9.1 - Determine the centroid (x,y) of the shaded area....Ch. 9.1 - Determine the centroid of the shaded area. Prob....Ch. 9.1 - Locate the center of mass x of the straight rod if...Ch. 9.1 - Locate the centroid of the homogeneous solid...Ch. 9.1 - Locate the centroid z of the homogeneous solid...Ch. 9.1 - Locate the center of mass of the homogeneous rod...Ch. 9.1 - Prob. 2PCh. 9.1 - Prob. 3PCh. 9.1 - Prob. 4P
Ch. 9.1 - Prob. 5PCh. 9.1 - Locate the centroid of the area.Ch. 9.1 - Prob. 7PCh. 9.1 - Prob. 8PCh. 9.1 - Prob. 9PCh. 9.1 - Locate the centroid of the area. Prob. 9-17Ch. 9.1 - Locate the centroid x of the area. Probs. 9-11/12Ch. 9.1 - Locate the centroid of the area. Probs. 9-11/12Ch. 9.1 - Locate the centroid x of the area. Probs. 9-13/14Ch. 9.1 - Locate the centroid of the area. Probs. 9-13/14Ch. 9.1 - Prob. 15PCh. 9.1 - Prob. 16PCh. 9.1 - Prob. 17PCh. 9.1 - Locate the centroid x of the area. Probs. 9-18/19Ch. 9.1 - Locate the centroid of the area. Probs. 9-18/19Ch. 9.1 - Locate the centroid of the shaded area.Ch. 9.1 - Prob. 21PCh. 9.1 - Prob. 22PCh. 9.1 - Prob. 23PCh. 9.1 - Prob. 24PCh. 9.1 - Determine the location of its center of gravity....Ch. 9.1 - Prob. 26PCh. 9.1 - Prob. 27PCh. 9.1 - Prob. 28PCh. 9.1 - Prob. 29PCh. 9.1 - Prob. 30PCh. 9.1 - Prob. 31PCh. 9.1 - Locate the centroid x of the area. Probs. 9-32/33Ch. 9.1 - Locate the centroid of the area. Probs. 9-32/33Ch. 9.1 - Determine the location of its center of mass. Also...Ch. 9.1 - Prob. 35PCh. 9.1 - Prob. 36PCh. 9.1 - Prob. 37PCh. 9.1 - Prob. 38PCh. 9.1 - Locate the centroid of the paraboloid. Probs....Ch. 9.1 - The material is homogeneous. Prob. 9-39Ch. 9.1 - Prob. 41PCh. 9.1 - Determine the centroid of the solid. Prob. 9-42Ch. 9.1 - Locate the center of gravity z of the solid. Prob....Ch. 9.1 - Locate the centroid of the ellipsoid of...Ch. 9.1 - Prob. 45PCh. 9.1 - Determine its mass and the distance z to the...Ch. 9.1 - Locate the centroid of the quarter-cone. Prob....Ch. 9.1 - Locate the centroid z of the frustum of the...Ch. 9.1 - Prob. 49PCh. 9.1 - Suggestion: Use a triangular plate element...Ch. 9.2 - Locate the centroid (x,y,z) of the wire bent in...Ch. 9.2 - Locate the centroid of the beams cross-sectional...Ch. 9.2 - Locate the centroid of the beams cross-sectional...Ch. 9.2 - Locate the centroid (x,y) of the cross-sectional...Ch. 9.2 - Locate the center of mass (x,y,z) of the...Ch. 9.2 - Determine the center of mass (x,y,z) of the...Ch. 9.2 - If the mass of the gusset plates at the joints and...Ch. 9.2 - Prob. 52PCh. 9.2 - Prob. 53PCh. 9.2 - Neglect the thickness of the material and slight...Ch. 9.2 - Prob. 55PCh. 9.2 - Each plate has a constant width in the z direction...Ch. 9.2 - Prob. 57PCh. 9.2 - Neglect the size of the corner welds at A and B...Ch. 9.2 - Prob. 59PCh. 9.2 - Prob. 60PCh. 9.2 - Prob. 61PCh. 9.2 - Prob. 62PCh. 9.2 - Prob. 63PCh. 9.2 - Prob. 64PCh. 9.2 - Prob. 65PCh. 9.2 - Assume all corners are square and neglect the size...Ch. 9.2 - Prob. 67PCh. 9.2 - Prob. 68PCh. 9.2 - Prob. 69PCh. 9.2 - Prob. 70PCh. 9.2 - Neglect the size of the corner welds at A and B...Ch. 9.2 - Prob. 72PCh. 9.2 - If it is folded over as shown, determine the...Ch. 9.2 - Determine the location (x,y,z) of its centroid....Ch. 9.2 - It the cord is cut, the part will rotate about the...Ch. 9.2 - Prob. 76PCh. 9.2 - The location of the center of gravity of each...Ch. 9.2 - Prob. 78PCh. 9.2 - Prob. 79PCh. 9.2 - Prob. 80PCh. 9.2 - Prob. 81PCh. 9.2 - Determine the distance h to which a...Ch. 9.2 - Determine the distance z to the centroid of the...Ch. 9.2 - Prob. 84PCh. 9.2 - Prob. 85PCh. 9.2 - Prob. 86PCh. 9.2 - Determine the distance x to its center of gravity...Ch. 9.2 - Prob. 88PCh. 9.2 - The cylinder and the cone are made from materials...Ch. 9.3 - Determine the surface area and volume of the solid...Ch. 9.3 - Prob. 14FPCh. 9.3 - Determine the surface area and volume of the solid...Ch. 9.3 - Determine the surface area and volume of the solid...Ch. 9.3 - Prob. 90PCh. 9.3 - Determine the volume of the storage tank. Probs....Ch. 9.3 - Prob. 92PCh. 9.3 - Prob. 93PCh. 9.3 - Prob. 94PCh. 9.3 - Prob. 95PCh. 9.3 - Prob. 96PCh. 9.3 - Prob. 97PCh. 9.3 - Prob. 98PCh. 9.3 - Prob. 99PCh. 9.3 - Prob. 100PCh. 9.3 - Determine the surface area and the volume of the...Ch. 9.3 - Prob. 102PCh. 9.3 - Prob. 103PCh. 9.3 - Each gallon of paint can cover 250 ft2. Probs....Ch. 9.3 - Prob. 105PCh. 9.3 - Prob. 106PCh. 9.3 - Prob. 107PCh. 9.3 - Prob. 108PCh. 9.3 - Prob. 109PCh. 9.3 - Prob. 110PCh. 9.3 - Prob. 111PCh. 9.3 - Prob. 112PCh. 9.3 - Prob. 113PCh. 9.3 - Prob. 114PCh. 9.5 - Water has a density of = 1 Mg/m3. Prob. F9-17Ch. 9.5 - The specific weight of water is = 62.4 lb/ft3.Ch. 9.5 - Water has a density of = 1 Mg/m3. Prob. F9-19Ch. 9.5 - Water has a density of = 1 Mg/m3. Prob. F9-20Ch. 9.5 - The specific weight of water is = 62.4 lb/ft3....Ch. 9.5 - Prob. 115PCh. 9.5 - Prob. 116PCh. 9.5 - The load over the plate varies linearly along the...Ch. 9.5 - The load is defined by the expression p = p0 sin...Ch. 9.5 - Prob. 119PCh. 9.5 - Determine the resultant force the water exerts on...Ch. 9.5 - For the condition of high tide shown, determine...Ch. 9.5 - Prob. 122PCh. 9.5 - Prob. 123PCh. 9.5 - Determine the magnitude of the resultant...Ch. 9.5 - Prob. 125PCh. 9.5 - Prob. 126PCh. 9.5 - The tank is filled with a liquid that has a...Ch. 9.5 - Prob. 128PCh. 9.5 - Prob. 129PCh. 9.5 - Prob. 130PCh. 9.5 - Prob. 131RPCh. 9.5 - Determine the volume of material required to make...Ch. 9.5 - Prob. 133RPCh. 9.5 - Prob. 134RPCh. 9.5 - Determine the magnitude of the resultant...Ch. 9.5 - Prob. 136RPCh. 9.5 - Prob. 137RPCh. 9.5 - Locate the centroid of the rod. Prob. R9-4Ch. 9.5 - Determine the horizontal and vertical components...Ch. 9.5 - Prob. 140RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 9. automatically Swings open to drain the marsh B. For the reactions developed at the hinge C and stop block D. The condition of high tide shown, determine the horizontal *9-120. When the tide water A subsides, the tide gate 9-123. The factor of saf defined as the ratio of the weight divided by the c the water pressure. Det- density of peone = 2.5 M leneth of the gate is 6 m and its height is 4 m. p = 1.0 Mg/m³. a distributed defined by 5), where Po of the plate. e resultant 4 m 3 m 2 marrow_forward12-16. The tank has a width of 2 mand is filled with water. Determine the horizontal and vertical components of the resultant force aeting on plate AB. 05 m 1.5m 60arrow_forwardDraw the free-body diagram When the A-tide water descends, the tide gate rotates automatically opening to drain the water from marsh B. For the high tide condition shown, Determine the horizontal reactions developed at joint e and at top D. The length of the gate is 13 cm and its height is 4 m. p water = 1.0 Mg / m3. 4 m 3 m 2 marrow_forward
- 4. An upright tank, full of water, has a height of 2m and a triangular base (cross section). If the base is equilateral with 2m in each side, find the work in pumping all the water to the level 1m above the tank.arrow_forward88tc AB has o weight of mine the minimum depth o 0pen it. The gate is. s rubber seal at 4.arrow_forwardFluid machanicarrow_forward
- Determine the upward thrust F on the .5 semi-cylindrical top of the container shown below. The container is full of oil under a pressure of 2 × 105 Pa Oil Y= 8.15 kN / m32 5 m Greater than 2000 kN Less than 1000 kN Greater than 1000 kN R= 0.75 m 2 marrow_forward2-50. The uniform rectangular relief gate AB has a weight of 8000 lb and a width of 4 ft. Determine the minimum depth h of water within the container needed to open it. The gate is pinned at B and rests on a rubber seal at A. h 6 ft 30arrow_forwardDetermine the force acting on the curved part. Indicate your locationarrow_forward
- The canal shown, which is in a form of a quarter circle, runs 9.3 m. into the paper. Determine the depth of the center of pressure (in meters). Use R = 15. Answer : 12.65m.arrow_forwardh = 4marrow_forwardThe uniform control gate AB shown is pinned at A and rests on the smooth surface at B. The gate has a width of 1m. If the gate has a mass of 3.9 Mg, determne the maximum depth of water h in the reservoir that will cause the gate to be on the verge of opening.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY