Limits Evaluate the following limits using Taylor series.
22.
Trending nowThis is a popular solution!
Chapter 9 Solutions
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
Additional Math Textbook Solutions
Calculus and Its Applications (11th Edition)
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Thomas' Calculus: Early Transcendentals (14th Edition)
University Calculus: Early Transcendentals (4th Edition)
Calculus & Its Applications (14th Edition)
- OP Q9. Use series to evaluate: Limit 3-0 In √1+x O X sin (2x)arrow_forwardI will rate and like. Thank you for your work!arrow_forwardIf a series of positive terms converges, does it follow that the remainder R,, must decrease to zero as n-co? Explain. Choose the correct answer below. OA. R, must decrease to zero because lim R, lim f(x)dx for all positive functions x. n-00 71-400 00 lima, n+00 K=1 OC. R, does not decrease to zero because R, is positive for a series with positive terms. OD. R, does not decrease to zero because convergent series do not have remainders. OB. R, must decrease to zero because lim R, n-+00 -0.arrow_forward
- Q(A). Let {fn(x)}-1=3: be a sequence of functions + (x – 2)* S. n=1 defined over [2,3]. Show that: (a) fn(x) is meaurable and monotonic increasing for all n.arrow_forwardFind the general solution to the homogeneous differential equation d²y dt² The solution has the form dy - - 12- + 100y = 0 dt y = C₁f₁(t) + C₂f2(t) with f₁(t) = f₂(t) = Left to your own devices, you will probably write down the correct answers, but in case you want to quibble, enter your answers so that the functions are normalized with their values at t = 0 equal to 0 and 1(respectively), and they are expressed as simply as possible. andarrow_forwardSeries ∞ n is a divergent series. Which of the following test(s) can be used to show its divergence. n=1 n²+1 (A). The Divergence Test (B). The Integral Test (C). The Limit Comparison Test (D). The Ratio Testarrow_forward
- (n²) diverges. Recall from the Laws of Exponents that 2 (n) Show that > n! (2")". n= 1 2 (n?) :? n! Which limit below is the correct limit for the Ratio Test, where an %3D 2 (n?) 2 (n2) •n! n! O A. lim В. lim 2(n + 1)2 (n+ 12) • (n + 1)! (n)! (n + 1)2 2 (n?) lim (n + 1)! C. lim D. 2 (n?) (n+ 12) n-0 2 n!arrow_forwardI for the function: f(x) = cos(7x). = COS a. Use sigma notation to write the Taylor series T(x) about xo = 14 (-1)"+172n+1 Σ fact (2n+1) 2n+1 A T(x) X - 18 n=0 b. Find interval of convergence of the series you found in Part a. Interval of convergence: (-infinity, infinity)arrow_forwardlimitation as shown in the figure thxarrow_forward
- we of f(x) = In (cosh r). wing limits: sin? r (b) lim 0 T2 1-e-h (a) lim of r does the series (1- r)"arrow_forward1/2 O O The Taylor polynomial for the function f(x)=- cosx; x, = in sigma notation (-1)* (2*+1)! (-1)* (x- (2 k+1)! Nonearrow_forwardDefine Find the values of x where the series converges and show that we get a continuous function on this set.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning