Limits Evaluate the following limits using Taylor series.
19.
Trending nowThis is a popular solution!
Chapter 9 Solutions
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
Additional Math Textbook Solutions
Precalculus Enhanced with Graphing Utilities (7th Edition)
Glencoe Math Accelerated, Student Edition
Precalculus (10th Edition)
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- 4n8-9n7+6n6 Evaluate the following limit or state that it diverges lim n→∞ -7n8+9n7+3n-1' 11 steps.arrow_forwardFind the limit by rewriting the fraction first. sin (x¹8+y18) +y18 lim (x,y) → (0,0) lim (x,y) →(0,0) 18 X sin (x18+y18) 18 18 X +y¹ = (Type an integer or a simplified fraction.arrow_forward-4 cu t 3 N÷ -2 x = -2 -1 3+ 2+ -2 + -3- -4. 2 3 Definition for continuous. 4 x = 4 5 A function f(x) is continuous at an x value of aif and only if the following three conditions are satisfied: (1) f(a) is a defined real number (2) limf(x) is a defined real number = limx→af (x) (3) f(a) = lim A function is discontinuous at an x value of a if it fails to be continuous at an xvalue of a. When x = : 1, f(x) is continuous. When x = 1, f(x) is not continuous.arrow_forward
- Q5. Foro < x <∞o, define sin (2-¹) x=0 f(x) = 2 x = 0. Show that f is not continuous at z = 0. [Hint: Use sequences.]arrow_forwardConsider the function f(x) In this problem you will calculate Hint: Rn lim Rn n→∞ 2 2²2 -7. 4 4 • S" ( - ²² - 7) d 4 The summation inside the brackets is Rn which is the Riemann sum where the sample points are chosen to be the right-hand endpoints of each sub-interval. Calculate Rn for f(x) X² 7 dx by using the definition [*162) de - Hom [224] f(x) dx lim f(x₁) Ax i=1 - 7 on the interval [0, 4] and write your answer as a function of n without any summation signs. 4arrow_forwardIf a series of positive terms converges, does it follow that the remainder R,, must decrease to zero as n-co? Explain. Choose the correct answer below. OA. R, must decrease to zero because lim R, lim f(x)dx for all positive functions x. n-00 71-400 00 lima, n+00 K=1 OC. R, does not decrease to zero because R, is positive for a series with positive terms. OD. R, does not decrease to zero because convergent series do not have remainders. OB. R, must decrease to zero because lim R, n-+00 -0.arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage