Write something similar to Problem 12 in which the combined fractional amounts of a quantity are equal to a given quantity and the fractions in the problem have different denominators. Solve your problem in two ways; with the aid of a diagram and with algebraic equations. Explain both solution methods, and discuss how they are related.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Mathematics for Elementary Teachers with Activities, Loose-Leaf Version Plus MyLab Math -- Access Card Package (5th Edition)
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
Precalculus: Mathematics for Calculus (Standalone Book)
Graphical Approach To College Algebra
University Calculus: Early Transcendentals (4th Edition)
College Algebra Essentials (5th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- 4 x+3 and g(x)=x2-9 4X-10 2X --13) The domain of rational expression A) 1R. {-2,-8} AB -14) Let f(x) = B) 1R. {2,-4,-8} 4X-12 x² +6x-16 X3+7X²+12X ? C) 1R \ {-4,-3,0} then f(x) + g(x) is equal ro D) IR 2 A) B) c) D) x²-9 x2-9 x²-9 x+4 DB 5x-4 A B If + then the value of B is equal to X+1 A) 4 B) 2 C) 5 D) 3 4X 4x+4 С.В.... x2+5X+6 x2 (x-2)(x+1) X-2 AC 16 The solution set of the equation A){4} B) {-3} C){ 1} 17 The solution set of the equation A) (-3,-2) B) [-3,0) C)[-3,-2] D). [-2,0) BA -18) Which one of the following is proper fraction? 2x+4 ≤0 入×1 x+2x+4 (x+1)(x+2) 2x+4x+2 = 4 X+1 is equal to D). {-5} ≤0 A) x6 +4 2x+12 2X x +4 B) c) x2-9 AL 2x+12 D) x+4 14) let g(x) = [x-3],then g(-2) is equal to A) -5 B)-6 C)-3 D) 3 Part III work out (show every step cleary) (2pt) 20. E9) Find the solution set of the equation 2x+4 x+1 ≤0 P(x) (a) P(x) =≤0 2x+4 50 x+1 x+1≤ 2x+4 (x-1)(x-2) x= 1 or x=2 solution is {1.2} x-1=0 of x-2=0 x = 1 or = 2arrow_forwardPlease show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. 1. The probability of a soccer game in a particular league going into overtime is 0.125. Find the following: a. The odds in favour of a game going into overtime. b. The odds in favour of a game not going into overtime. c. If the teams in the league play 100 games in a season, about how many games would you expect to go into overtime?arrow_forwardPlease show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. 1. The probability of a soccer game in a particular league going into overtime is 0.125. Find the following: a. The odds in favour of a game going into overtime. b. The odds in favour of a game not going into overtime. c. If the teams in the league play 100 games in a season, about how many games would you expect to go into overtime?arrow_forward
- Please show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. 1. The probability of a soccer game in a particular league going into overtime is 0.125. Find the following: a. The odds in favour of a game going into overtime. b. The odds in favour of a game not going into overtime. c. If the teams in the league play 100 games in a season, about how many games would you expect to go into overtime?arrow_forwardThe probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardIn his first hockey game of the season, Brayden takes a total of 10 shots on the goalie and scores 1 time. Later in the season, he takes 30 shots in total on the goalie. How many goals would you expect him to make? What assumptions are making? Are your assumptions realistic? Explain.arrow_forward
- The probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardThe probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardDevon is expected to receive 70% of the votes at the student council election. If there are 650 students in his school, how many are expected to vote for him?arrow_forward
- Intermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University