Concept explainers
Free fall An object in free fall may be modeled by assuming that the only forces at work are the gravitational force and air resistance. By Newton’s Second Law of Motion (mass × acceleration = the sum of the external forces), the velocity of the object satisfies the
where f is a function that models the air resistance (assuming the positive direction is downward). One common assumption (often used for motion in air) is that f(v) = – kv2 , where k > 0 is a drag coefficient.
a. Show that the equation can be written in the form v'(t) = g – av2, where a = k/m.
b. For what (positive) value of v is v′(t) = 0? (This equilibrium solution is called the terminal velocity.)
c. Find the solution of this separable equation assuming v(0) = 0 and 0 < v2 < g/a.
d. Graph the solution found in part (c) with g = 9.8 m/s2, m = 1, and k = 0.1, and verify that the terminal velocity agrees with the value found in part (b).
Trending nowThis is a popular solution!
Chapter 9 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Introductory Statistics
Algebra and Trigonometry (6th Edition)
Thinking Mathematically (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
- #8 (a) Find the equation of the tangent line to y = √x+3 at x=6 (b) Find the differential dy at y = √x +3 and evaluate it for x=6 and dx = 0.3arrow_forwardQ.2 Q.4 Determine ffx dA where R is upper half of the circle shown below. x²+y2=1 (1,0)arrow_forwardthe second is the Problem 1 solution.arrow_forward
- c) Sketch the grap 109. Hearing Impairments. The following function approximates the number N, in millions, of hearing-impaired Americans as a function of age x: N(x) = -0.00006x³ + 0.006x2 -0.1x+1.9. a) Find the relative maximum and minimum of this function. b) Find the point of inflection of this function. Sketch the graph of N(x) for 0 ≤ x ≤ 80.arrow_forwardThe purpose of this problem is to solve the following PDE using a numerical simulation. { af (t, x) + (1 − x)= - Ət af 10²ƒ + მე 2 მე2 = 0 f(ln(2), x) = ex (a) The equation above corresponds to a Feynman-Kac formula. Identify the stochastic process (X)20 and the expectation that would correspond to f(t, x) explicitly. (b) Use a numerical simulation of (X+) above to approximate the values of f(0, x) at 20 discrete points for x, uniformly spaced in the interval [0,2]. Submit a graph of your solution. (c) How would you proceed to estimate the function f(0.1, x). (Briefly explain your method, you do not need to do it.) Extra question: You can explicitly determine the function in (b) (either as a conditional expectation or by solving the PDE). Compare the theoretical answer to your solution.arrow_forwardA sequence is given by the formula an = n/2n^2 +1 . Show the sequence is monotone decreasing for n >1. (Hint: What tool do you know for showing a function is decreasing?)arrow_forward