Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
11th Edition
ISBN: 9781305965737
Author: Dennis G. Zill
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9.2, Problem 16E
Consider the initial-value problem y′ = 2y, y(0) = 1. The analytic solution is y(x) = e2x.
- (a) Approximate y(0.1) using one step and the RK4 method.
- (b) Find a bound for the local truncation error in y1.
- (c) Compare the error in y1 with your error bound.
- (d) Approximate y(0.1) using two steps and the RK4 method.
- (e) Verify that the global truncation error for the RK4 method is O(h4) by comparing the errors in parts (a) and (d).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.
Solve the system of equation for y using Cramer's rule. Hint: The
determinant of the coefficient matrix is -23.
-
5x + y − z = −7
2x-y-2z = 6
3x+2z-7
Chapter 9 Solutions
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
Ch. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - Prob. 4ECh. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - Prob. 6ECh. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - In Problems 110 use the improved Eulers method to...
Ch. 9.1 - Consider the initial-value problem y′ = (x + y –...Ch. 9.1 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.1 - Repeat Problem 13 using the improved Eulers...Ch. 9.1 - Repeat Problem 13 using the initial-value problem...Ch. 9.1 - Repeat Problem 15 using the improved Euler’s...Ch. 9.1 - Consider the initial-value problem y = 2x 3y + 1,...Ch. 9.1 - Repeat Problem 17 using the improved Euler’s...Ch. 9.1 - Repeat Problem 17 for the initial-value problem y′...Ch. 9.1 - Repeat Problem 19 using the improved Euler’s...Ch. 9.1 - Answer the question Why not? that follows the...Ch. 9.2 - Use the RK4 method with h = 0.1 to approximate...Ch. 9.2 - Assume that (4). Use the resulting second-order...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - If air resistance is proportional to the square of...Ch. 9.2 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.2 - Repeat Problem 16 using the initial-value problem...Ch. 9.2 - Consider the initial-value problem y′ = 2x – 3y +...Ch. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - In Problems 58 use the Adams-Bashforth-Moulton...Ch. 9.4 - Use Eulers method to approximate y(0.2), where...Ch. 9.4 - Use Euler’s method to approximate y(1.2), where...Ch. 9.4 - Prob. 3ECh. 9.4 - In Problems 3 and 4 repeat the indicated problem...Ch. 9.4 - Prob. 5ECh. 9.5 - In Problems 110 use the finite difference method...Ch. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - In Problems 1 – 10 use the finite difference...Ch. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - The electrostatic potential u between two...Ch. 9.5 - Prob. 13ECh. 9 - In Problems 14 construct a table comparing the...Ch. 9 - In Problems 14 construct a table comparing the...Ch. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- ◆ Switch To Light Mode HOMEWORK: 18, 19, 24, 27, 29 ***Please refer to the HOMEWORK sheet from Thursday, 9/14, for the problems ****Please text or email me if you have any questions 18. Figure 5-35 is a map of downtown Royalton, showing the Royalton River running through the downtown area and the three islands (A, B, and C) connected to each other and both banks by eight bridges. The Down- town Athletic Club wants to design the route for a marathon through the downtown area. Draw a graph that models the layout of Royalton. FIGURE 5-35 North Royalton Royalton River South Royption 19. A night watchman must walk the streets of the Green Hills subdivision shown in Fig. 5-36. The night watch- man needs to walk only once along each block. Draw a graph that models this situation.arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forwardneed help with my homeworkarrow_forward
- 16.4. Show that if z' is the principal value, then 1+e** z'dz = (1-i), 2 where is the upper semicircle from z = 1 to z = -1.arrow_forwardL 16.8. For each of the following functions f, describe the domain of ana- lyticity and apply the Cauchy-Goursat Theorem to show that f(z)dz = 0, where is the circle |2|=1:1 (a). f(z) = 1 z 2 + 2x + 2 (b). f(z) = ze*. What about (c). f(z) = (2z-i)-2?arrow_forward16.3. Evaluate each of the following integrals where the path is an arbitrary contour between the limits of integrations (a). [1 ri/2 edz, (b). (b). La cos COS (2) d dz, (c). (z−3)³dz. 0arrow_forward
- Q/ prove that:- If Vis a finite dimensional vector space, then this equivalence relation has only a single equivalence class.arrow_forward/ prove that :- It is easy to check that equivalence of norms is an e quivalence relation on the set of all norms on V.arrow_forward3) Let R be a set of real number and d:R2 R R such that d((x, y), (z, w)) = √(x-2)² + (y-w)² show that d is a metric on R².H.Warrow_forward
- Use a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY