
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
11th Edition
ISBN: 9781305965737
Author: Dennis G. Zill
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9.2, Problem 17E
Repeat Problem 16 using the initial-value problem y′ = –2y + x, y(0) = 1. The analytic solution is
16. Consider the initial-value problem y′ = 2y, y(0) = 1. The analytic solution is y(x) = e2x.
- (a) Approximate y(0.1) using one step and the RK4 method.
- (b) Find a bound for the local truncation error in y1.
- (c) Compare the error in y1 with your error bound.
- (d) Approximate y(0.1) using two steps and the RK4 method.
- (e) Verify that the global truncation error for the RK4 method is O(h4) by comparing the errors in parts (a) and (d).
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
R₂ = X2
2) slots per pole per phase = 3/3 1
B-180-60
msl
Ka Sin (1)
Isin ()
sin(30)
Sin (30)
اذا ميريد شرح الكتب بس 0 بالفراغ
3) Cos (30) 0.866
4) Rotating
5) Synchronous speed, 120 x 50
s = 1000-950
1000
Copper losses 5kw
Rotor input 5
6) 1
0.05
G
50105
loo kw
اذا ميريد شرح الكتب فقط look
7) rotov
DC
ined sove in peaper
I need a detailed
solution on paper
please
064
2- A hot ball (D=15 cm ) is cooled by forced air T.-30°C, the rate of heat transfer from the ball
is 460.86 W. Take for the air -0.025 Wim °C and Nu=144.89, find the ball surface temperature
a) 300 °C 16 b) 327 °C
c) 376 °C
d) None
か
=
750
01
Answer questions 8.3.3 and 8.3.4 respectively
8.3.4 .WP An article in Medicine and Science in Sports and
Exercise [“Electrostimulation Training Effects on the Physical Performance of Ice Hockey Players” (2005, Vol. 37, pp.
455–460)] considered the use of electromyostimulation (EMS) as
a method to train healthy skeletal muscle. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried
out three times per week for 3 weeks on 17 ice hockey players.
The 10-meter skating performance test showed a standard deviation of 0.09 seconds. Construct a 95% confidence interval of the
standard deviation of the skating performance test.
8.6.7 Consider the tire-testing data in Exercise 8.2.3. Compute a 95% tolerance interval on the life of the tires that has confidence level 95%. Compare the length of the tolerance interval with the length of the 95% CI on the population mean. Which interval is shorter? Discuss the difference in interpretation of these two intervals.
Chapter 9 Solutions
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
Ch. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - Prob. 4ECh. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - Prob. 6ECh. 9.1 - In Problems 1–10 use the improved Euler’s method...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - In Problems 110 use the improved Eulers method to...Ch. 9.1 - In Problems 110 use the improved Eulers method to...
Ch. 9.1 - Consider the initial-value problem y′ = (x + y –...Ch. 9.1 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.1 - Repeat Problem 13 using the improved Eulers...Ch. 9.1 - Repeat Problem 13 using the initial-value problem...Ch. 9.1 - Repeat Problem 15 using the improved Euler’s...Ch. 9.1 - Consider the initial-value problem y = 2x 3y + 1,...Ch. 9.1 - Repeat Problem 17 using the improved Euler’s...Ch. 9.1 - Repeat Problem 17 for the initial-value problem y′...Ch. 9.1 - Repeat Problem 19 using the improved Euler’s...Ch. 9.1 - Answer the question Why not? that follows the...Ch. 9.2 - Use the RK4 method with h = 0.1 to approximate...Ch. 9.2 - Assume that (4). Use the resulting second-order...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - If air resistance is proportional to the square of...Ch. 9.2 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.2 - Repeat Problem 16 using the initial-value problem...Ch. 9.2 - Consider the initial-value problem y′ = 2x – 3y +...Ch. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - In Problems 58 use the Adams-Bashforth-Moulton...Ch. 9.4 - Use Eulers method to approximate y(0.2), where...Ch. 9.4 - Use Euler’s method to approximate y(1.2), where...Ch. 9.4 - Prob. 3ECh. 9.4 - In Problems 3 and 4 repeat the indicated problem...Ch. 9.4 - Prob. 5ECh. 9.5 - In Problems 110 use the finite difference method...Ch. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - In Problems 1 – 10 use the finite difference...Ch. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - The electrostatic potential u between two...Ch. 9.5 - Prob. 13ECh. 9 - In Problems 14 construct a table comparing the...Ch. 9 - In Problems 14 construct a table comparing the...Ch. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 8.6.2 Consider the natural frequency of beams described in Exercise 8.2.8. Compute a 90% prediction interval on the diameter of the natural frequency of the next beam of this type that will be tested. Compare the length of the prediction interval with the length of the 90% CI on the population mean. 8.6.3 Consider the television tube brightness test described in Exercise 8.2.7. Compute a 99% prediction interval on the brightness of the next tube tested. Compare the length of the prediction interval with the length of the 99% CI on the population mean.arrow_forwardAnswer question S8 stepwisearrow_forwardAnswer questions 8.2.11 and 8.2.12 respectivelyarrow_forward
- 8.4.2 An article in Knee Surgery, Sports Traumatology, Arthroscopy [“Arthroscopic Meniscal Repair with an Absorbable Screw: Results and Surgical Technique” (2005, Vol. 13, pp. 273–279)] showed that only 25 out of 37 tears (67.6%) located between 3 and 6 mm from the meniscus rim were healed. a. Calculate a two-sided 95% confidence interval on the proportion of such tears that will heal. b. Calculate a 95% lower confidence bound on the proportion of such tears that will heal. 8.4.3 An article in the Journal of the American Statistical Association [“Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling” (1990, Vol. 85, pp. 972–985)] measured the weight of 30 rats under experiment controls. Suppose that 12 were underweight rats. a. Calculate a 95% two-sided confidence interval on the true proportion of rats that would show underweight from the experiment. b. Using the point estimate of p obtained from the preliminary sample, what sample size is needed to be 95%…arrow_forward8.4.8 Use the data from Exercise 8.4.2 to compute the two-sided Agresti-Coull CI on the proportion of tears that heal. Compare and discuss the relationship of this interval to the one computed in Exercise 8.4.2.arrow_forwardAnswer questions 8.3.7 and 8.4.1 respectivelyarrow_forward
- Don't do 14. Please solve 19arrow_forward8.4.7 Use the data from Exercise 8.4.5 to compute the two-sided Agresti-Coull CI on the proportion of digits read correctly. Compare and discuss the relationship of this interval to the one computed in Exercise 8.4.5.arrow_forward8.6.5 Consider the fuel rod enrichment data described in Exercise 8.2.11. Compute a 90% prediction interval on the enrichment of the next rod tested. Compare the length of the prediction interval with the length of the 99% CI on the population mean.arrow_forward
- 8.4.4 The Arizona Department of Transportation wishes to survey state residents to determine what proportion of the population would like to increase statewide highway speed limits from 65 mph to 75 mph. How many residents does the department need to survey if it wants to be at least 99% confident that the sample proportion is within 0.05 of the true proportion? 8.4.5 The U.S. Postal Service (USPS) has used optical character recognition (OCR) since the mid-1960s. In 1983, USPS began deploying the technology to major post offices throughout the country (www.britannica.com). Suppose that in a random sample of 500 handwritten zip code digits, 466 were read correctly. a. Construct a 95% confidence interval for the true proportion of correct digits that can be automatically read. b. What sample size is needed to reduce the margin of error to 1%? c. How would the answer to part (b) change if you had to assume that the machine read only one-half of the digits correctly?arrow_forwardAnswer questions 8S7 and 8S14arrow_forwardAnswer questions 8.2.9 and 8.2.10 respectivelyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY