Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.13, Problem 24KCP
What is the difference between a coherent precipitate and an incoherent one?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1. What is Age Hardening and how does it differ from Quench Hardening?
2. Briefly describe the three steps involved in the Precipitation Hardening process.
3. What are Guinier-Preston Zones?
4. What's the difference between a Coherent and a Non-Coherent Precipitate?
5. Why would the formation of the 0' phase generally be undesirable, and the formation of 0-(CuAl2) be
even less desirable, when precipitation hardening an alloy?
6. What metals does a 2024-T4 alloy contain? Briefly define/explain what the T4 represents?
7. What metals does a 6061-T6 alloy contain? Briefly define/explain what the T6 represents?
8. Consider the following three alloys from the Al-Cu system (see Al-Cu Phase Diagram):
Pure Aluminum, 3wt%Cu-97wt%Al, and 8wt%Cu-92wt%Al.
Which of these alloys is the best candidate for Age Hardening? Why?
Which of these alloys is the worst candidate for Age Hardening? Why?
Is this a austenite microstructure if so how can you tell
What is the general form of a eutectic reaction?
Chapter 9 Solutions
Foundations of Materials Science and Engineering
Ch. 9.13 - (a) How is raw pig iron extracted from iron oxide...Ch. 9.13 - (a) Why is the FeFe3C phase diagram a metastable...Ch. 9.13 - (a) What is the structure of pearlite? (b) Draw a...Ch. 9.13 - Distinguish between the following three types of...Ch. 9.13 - Prob. 5KCPCh. 9.13 - (a) Define an FeC martensite. (b) Describe the...Ch. 9.13 - (a) What is an isothermal transformation in the...Ch. 9.13 - How does the isothermal transformation diagram for...Ch. 9.13 - Draw a continuous-cooling transformation diagram...Ch. 9.13 - (a) Describe the full-annealing heat treatment for...
Ch. 9.13 - Describe the process-annealing heat treatment for...Ch. 9.13 - What is the normalizing heat treatment for steel...Ch. 9.13 - Describe the tempering process for a plain-carbon...Ch. 9.13 - (a) Describe the martempering (marquenching)...Ch. 9.13 - (a) Describe the austempering process for a...Ch. 9.13 - (a) Explain the numbering system used by the AISI...Ch. 9.13 - (a) What arc some of the limitations of...Ch. 9.13 - (a) What compounds docs aluminum form in steels?...Ch. 9.13 - Prob. 19KCPCh. 9.13 - (a) Define the hardenability of a steel. (b)...Ch. 9.13 - Prob. 21KCPCh. 9.13 - Prob. 22KCPCh. 9.13 - Prob. 23KCPCh. 9.13 - What is the difference between a coherent...Ch. 9.13 - Prob. 25KCPCh. 9.13 - Prob. 26KCPCh. 9.13 - Prob. 27KCPCh. 9.13 - (a) Describe the three principal casting processes...Ch. 9.13 - Prob. 29KCPCh. 9.13 - Prob. 30KCPCh. 9.13 - Prob. 31KCPCh. 9.13 - Prob. 32KCPCh. 9.13 - Prob. 33KCPCh. 9.13 - Prob. 34KCPCh. 9.13 - Prob. 35KCPCh. 9.13 - (a) What are the cast irons? (b) What is their...Ch. 9.13 - Prob. 37KCPCh. 9.13 - Prob. 38KCPCh. 9.13 - Prob. 39KCPCh. 9.13 - Prob. 40KCPCh. 9.13 - Prob. 41KCPCh. 9.13 - Prob. 42KCPCh. 9.13 - Prob. 43KCPCh. 9.13 - Prob. 44KCPCh. 9.13 - Prob. 45KCPCh. 9.13 - (a) Why arc titanium and its alloys of special...Ch. 9.13 - Prob. 47KCPCh. 9.13 - Prob. 48KCPCh. 9.13 - Prob. 49KCPCh. 9.13 - Prob. 50KCPCh. 9.13 - Prob. 51KCPCh. 9.13 - Prob. 52KCPCh. 9.13 - Describe the structural changes that take place...Ch. 9.13 - Describe the structural changes that take place...Ch. 9.13 - If a thin sample of a eutectoid plain-carbon steel...Ch. 9.13 - If a thin sample of a eutectoid plain-carbon steel...Ch. 9.13 - (a) What types of microstructures arc produced by...Ch. 9.13 - A 0.65 % C hypoeutectoid plain-carbon steel is...Ch. 9.13 - A 0.25% C hypoeutectoid plain-carbon steel is...Ch. 9.13 - A plain-carbon steel contains 93 wt % ferrite7 wt%...Ch. 9.13 - A plain-carbon steel contains 45 wt% proeutectoid...Ch. 9.13 - A plain-carbon steel contains 5.9 wt%...Ch. 9.13 - A 0.90% C hypereutectoid plain-carbon steel is...Ch. 9.13 - A 1.10% C hypereutectoid plain-carbon steel is...Ch. 9.13 - If a hypereutectoid plain-carbon steel contains...Ch. 9.13 - A hypereutectoid plain-carbon steel contains 10.7...Ch. 9.13 - A plain-carbon steel contains 20.0 wt%...Ch. 9.13 - A 0.55% C hypoeutectoid plain-carbon steel is...Ch. 9.13 - A hypoeutectoid steel contains 44.0 wt% eutectoid...Ch. 9.13 - A hypoeutectoid steel contains 24.0 wt% eutectoid...Ch. 9.13 - A 1.10 % C hypereutectoid plain-carbon steel is...Ch. 9.13 - Draw timetemperature cooling paths for a 1080...Ch. 9.13 - Draw timetemperature cooling paths for a 1080...Ch. 9.13 - Thin pieces of 0.3-mm-thick hot-rolled strips of...Ch. 9.13 - Prob. 75AAPCh. 9.13 - Prob. 76AAPCh. 9.13 - Prob. 77AAPCh. 9.13 - Prob. 78AAPCh. 9.13 - Prob. 79AAPCh. 9.13 - Prob. 80AAPCh. 9.13 - Prob. 81AAPCh. 9.13 - Prob. 82AAPCh. 9.13 - An austenitized 40-mm-diameter 4340 steel bar is...Ch. 9.13 - Prob. 84AAPCh. 9.13 - Prob. 85AAPCh. 9.13 - Prob. 86AAPCh. 9.13 - Prob. 87AAPCh. 9.13 - Prob. 88AAPCh. 9.13 - Prob. 89AAPCh. 9.13 - Prob. 90AAPCh. 9.13 - Prob. 91AAPCh. 9.13 - Prob. 92AAPCh. 9.13 - (a) For a plain-carbon steel with 1 wt % carbon...Ch. 9.13 - Prob. 94SEPCh. 9.13 - Prob. 95SEPCh. 9.13 - Prob. 96SEPCh. 9.13 - Prob. 97SEPCh. 9.13 - Prob. 98SEPCh. 9.13 - Prob. 99SEPCh. 9.13 - Prob. 100SEPCh. 9.13 - Prob. 101SEPCh. 9.13 - Prob. 102SEPCh. 9.13 - Prob. 103SEPCh. 9.13 - Both 4140 and 4340 steel alloys may be tempered to...Ch. 9.13 - Prob. 105SEPCh. 9.13 - Aircraft fuselage is made of aluminum alloys 2024...Ch. 9.13 - Prob. 107SEPCh. 9.13 - Prob. 108SEPCh. 9.13 - Prob. 109SEPCh. 9.13 - (a) What makes austenitic stainless steels that...Ch. 9.13 - Prob. 111SEPCh. 9.13 - Prob. 112SEPCh. 9.13 - Prob. 113SEPCh. 9.13 - (a) Give examples of components or products that...Ch. 9.13 - Prob. 115SEPCh. 9.13 - Prob. 116SEPCh. 9.13 - Prob. 117SEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2) The region showing planar growth during solidification near the fusion zone boundary will exhibit O High temperature gradient and high growth rate High temperature gradient and low growth rate Low temperature gradient and high growth rate O Low temperature gradient and low growth ratearrow_forwardDraw the iron carbon phase diagram and labeling all lines and areas. Then:- 1- find the melting point of cast iron with 2.2%C. 2- explain in detail the steps of solidification and transformation of cast iron with 3%C. 3- draw the expected microstructure of iron with 0.1%C ; 0.4%C; 0.83%C; 2%C; 4.3%C. 4-draw the cooling curve for hyper steel with 1.8%C. 5- find the percentage of liquid and solid for cast iron with 3.8%C at 1160 degree Celsius with the composition for each of them.arrow_forward7. mention the name and principle of the following formation process? Diedon d wa fowarrow_forward
- What is a complementary solutin?arrow_forwardUsing the TTT diagram, what microstructure would be developed by rapidly cooling to 650°C and holding for 50 seconds, followed by rapid cooling to 500°C and holding for 5 seconds, followed by quenching to room temperature? (give relative percentages of each microstructure component) Using the TTT diagram, describe the entire thermal treatment that would generate a microstructure consisting of 50% bainite, and 50% martensite. On the CCT diagram to the right, what microstructure would be developed by following cooling curve (c), then heating to 700°C for at least a day? Temperature l"C)arrow_forwardSelect all that apply. Which parameters are going to affect the ease at which a solid state diffusional phase transformation will nucleaate? Interphase surface energy Undercooling or supercooling Enthalpy of transformation Volume difference between the two phasesarrow_forward
- To produce martensite, do you need to use a very slow cooling rate? Why or why not ?arrow_forwardPlease show all work A 65Cu-35Zn brass is heated from 300°C to 1000°C. What phases are present at each 100°C interval?arrow_forward3) The dihedral wetting angle between solid- liquid interface with lowest solidification cracking tendency under identical welding conditions is 0° O45° 60° 90°arrow_forward
- explain the significance of equivalance ratio. How does the product gas content change with equivalence ratio=?arrow_forwardI need the answer as soon as possiblearrow_forward(11.10) Suppose that a steel of eutectoid composi- tion is cooled to 550°C (1020°F) from 760°C(1400°F) in less than 0.5 s and held at this temperature. (a) How long will it take for the austenite- to pearlite reaction to go to 50% comple- ton? To 100% completion? (b) Estimate the hardness of the alloy that has completely transformed to pearlite? 11.12) Briefly cite the differences between pearl- rp. bainite, and spheroidite relative to crostructure and mechanical properties?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License