The exergy destruction associated with each process of the Brayton cycle and the exergy of the exhaust gases at the exit of the regenerator.
Answer to Problem 150P
The exergy destruction associated with process 1-2 for Brayton cycle is
The exergy destruction associated with process 3-4 for Brayton cycle is
The exergy destruction associated with regeneration process for Brayton cycle is
The exergy destruction associated with process 5-3 for Brayton cycle is
The exergy destruction associated with process 6-1 for Brayton cycle is
The exergy of the exhaust gases at the exit of the regenerator is
Explanation of Solution
Draw
Write the expression of pressure ratio for the regenerative Brayton cycle
Here, pressure at state 2 is
Write the pressure ratio and pressure relation for the process 3-4.
Here, pressure at state 3 is
Write the expression of efficiency of the turbine
Here, enthalpy at state 3 is
Write the expression of heat added due to regeneration
Here, the effectiveness of the regenerator is
Write the expression of net work output of the regenerative Brayton cycle
Here, the work output by the turbine is
Write the expression of heat input to the regenerative Brayton cycle
Write the expression of heat rejected by the regenerative Brayton cycle
Write the expression of specific enthalpy at state 6
Write the specific enthalpy relation for the regenerator.
Write the expression of exergy destruction associated with the process 1-2 for Brayton cycle
Here, the gas constant of air is R, entropy of air at state 2 as a function of temperature only is
Write the expression of exergy destruction for process 3-4
Here, entropy of air at state 3 as a function of temperature is
Write the expression of exergy destruction for Brayton cycle
Here, entropy of air at state 5 as a function of temperature alone is
Write the expression of exergy destruction for process 5-3
Here, the temperature of the heat source is
Write the expression of exergy destruction for process 6-1
Here, the temperature of the sink is
Write the expression of stream exergy at the exit of the regenerator (state 6)
Here, the specific enthalpy of the surroundings is
Write the expression of change entropy for the exit of the regenerator
Here, entropy of air at the surroundings as a function of temperature alone is
Conclusion:
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at 310 K
Substitute 900 kPa for
Substitute
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at 50.06
Substitute
Substitute 0.80 for
Substitute
Substitute
Substitute
Substitute 310.24
Substitute 659.84
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at 310 K
Substitute 300 K for
Thus, the exergy destruction associated with process 1-2 for Brayton cycle is
Substitute 300 K for
Thus, the exergy destruction associated with process 3-4 for Brayton cycle is
Substitute 300 K for
Thus, the exergy destruction associated with regeneration process for Brayton cycle is
Substitute 300 K for
Thus, the exergy destruction associated with process 5-3 for Brayton cycle is
Substitute 300 K for
Thus, the exergy destruction associated with process 6-1 for Brayton cycle is
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at 300 K
Substitute
Substitute
Thus, the exergy of the exhaust gases at the exit of the regenerator is
Want to see more full solutions like this?
Chapter 9 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- 12. A Carnot cycle operates between the temperature limits of 300°K and 1500°K, and produces 600 kW of net power. Determine the rate of entropy changes of the working fluid during the heat addition process.arrow_forwardAn air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27°C. Determine the total exergy destruction associated with the cycle, assuming a source temperature of 2000 K and a sink temperature of 300 K. Also, determine the exergy at the end of the isentropic compression process. Account for the variation of specific heats with temperature.arrow_forwardA gas turbine plant of 1000 kW capacities takes the air at 1.11 bar and 150C. The pressure ratio of the cycle is 6 and maximum temperature is limited to 7150 C. A regenerator of 65% effectiveness is added in the plant to increase the overall efficiency of the plant. the pressure drop in the combustion chamber is 0.12 bars as well as in the regenerator is also 0.12 bars. Assuming the isentropic efficiency of the compressor 75% and of the turbine is 75%, determine the plant thermal efficiency. Neglect the mass of the fuel. The arrangement of the components are shown in figure 1 and the processes are represented o T-s diagram as shown in Figure 2 Exhaust | Fuel www 5.91 barg (2 Regen. CC 3 2' P. = 1.01 bar S P, = 6 bar 1.16 bararrow_forward
- A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 32 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of air at the compressor exit is 8 times the value at the compressor inlet. Assuming an isentropic efficiency of 80 percent for the compressor and 86 percent for the turbine, determine the mass flow rate of air through the cycle. Account for the variation of specific heats with temperature.arrow_forwardFor a refrigeration cycle using refrigerant 134a and a compressor isentropic efficiency of 80% and a mass flow rate of 0.2 kg/s, determine the coefficient of performance and the rate of entropy generation in the compressor. The state before the compressor is saturated vapor at 260 K; the temperature and the pressure at the condenser outlet are 305 K and 10 bar.arrow_forwardA gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 33 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of air at the compressor exit is eight times the value at the compressor inlet. Assuming an isentropic efficiency of 80 percent for the compressor and 86 percent for the turbine, determine the mass flow rate of air through the cycle using constant specific heats at room temperature. The properties of air at room temperature are cp=1.005 kJ/kg-K and k=1.4. The mass flow rate of air through the cycle is kg/s.arrow_forward
- As a car gets older, will its compression ratio change? How about the mean effective pressure?arrow_forward3. In a gas turbine plant air is compressed from 1.01 bar and 15 °C through a pressure ratio of 5. It is then heated in a combustion chamber at constant pressure to a temperature of 700 °C and expanded to atmospheric pressure in a turbine. The isentropic efficiencies of compression and expansion are respectively 0.8 and 0.85. Calculate (a) the cycle efficiency and (b) the work ratio. Assume that the properties of air do not change with temperature and may be taken as Cp = 1.005 kJ/kg K and y = 1.4.arrow_forwardPower stationsarrow_forward
- Consider an air-standard Otto cycle. Prior to the isentropic compression process, the air is at 100 kPa, 290 K, and 600 cm^3. The temperature at the end of the isentropic compression process is 613.59 K. Assume the specific heat is constant with Cv = 0.718 kJ/kgK and k = 1.4. %3D In the question that follows, select the answer that is closest to the true value. What is the compression ratio?arrow_forwardA gas turbine plant of 1000 kW capacities takes the air at 1.11 bar and 15°C. The pressure ratio of the cycle is 6 and maximum temperature is limited to 715°C. A regenerator of 65% effectiveness is added in the plant to increase the overall efficiency of the plant. the pressure drop in the combustion chamber is 0.12 bars as well as in the regenerator is also 0.12 bars. Assuming the isentropic efficiency of the compressor 75% and of the turbine is 75%, determine the plant thermal efficiency. Neglect the mass of the fuel. The arrangement of the components are shown in figure 1 and the processes are represented on T-S diagram as shown in Figure 2 Exhaust (6) wwww Regen. Fuel 8 CC G 2 P₂ = 6 bar 5.91 bar 1.16 bar 5 5-1 P₁ = 1.01 bar Sarrow_forwardfrom d to h onlyarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY