A gas-turbine engine operates on the ideal Brayton cycle with regeneration, as shown in Fig. P9–105. Now the regenerator is rearranged so that the airstreams of states 2 and 5 enter at one end of the regenerator and streams 3 and 6 exit at the other end (i.e., parallel flow arrangement of a heat exchanger). Consider such a system when air enters the compressor at 100 kPa and 20°C; the compressor pressure ratio is 7; the maximum cycle temperature is 727°C; and the difference between the hot and cold airstream temperatures is 6°C at the end of the regenerator where the cold stream leaves the regenerator. Is the cycle arrangement shown in the figure more or less efficient than this arrangement? Assume both the compressor and the turbine are isentropic, and use constant specific heats at room temperature.
A gas-turbine engine operates on the ideal Brayton cycle with regeneration, as shown in Fig. P9–105. Now the regenerator is rearranged so that the airstreams of states 2 and 5 enter at one end of the regenerator and streams 3 and 6 exit at the other end (i.e., parallel flow arrangement of a heat exchanger). Consider such a system when air enters the compressor at 100 kPa and 20°C; the compressor pressure ratio is 7; the maximum cycle temperature is 727°C; and the difference between the hot and cold airstream temperatures is 6°C at the end of the regenerator where the cold stream leaves the regenerator. Is the cycle arrangement shown in the figure more or less efficient than this arrangement? Assume both the compressor and the turbine are isentropic, and use constant specific heats at room temperature.
Solution Summary: The author explains the thermal efficiency of the ideal Brayton cycle with and without regeneration.
A gas-turbine engine operates on the ideal Brayton cycle with regeneration, as shown in Fig. P9–105. Now the regenerator is rearranged so that the airstreams of states 2 and 5 enter at one end of the regenerator and streams 3 and 6 exit at the other end (i.e., parallel flow arrangement of a heat exchanger). Consider such a system when air enters the compressor at 100 kPa and 20°C; the compressor pressure ratio is 7; the maximum cycle temperature is 727°C; and the difference between the hot and cold airstream temperatures is 6°C at the end of the regenerator where the cold stream leaves the regenerator. Is the cycle arrangement shown in the figure more or less efficient than this arrangement? Assume both the compressor and the turbine are isentropic, and use constant specific heats at room temperature.
1- Determine the following: 1- RSHF? 2- C.C.C in tons-ref. 3- Mass
of supply air?
Fresh
Spray chilled
water
S
air
100% RH
To 34 C db & 26 wbt
S
Operation
fan
room I
Exhaust
air
Ti 22 C db & 50% RH
How do I solve this task
A weight for a lift is suspended using an adapter. The counterweight is held up with 4 screws. The weight F is 3200kg.
The screws have a strength class of 8.8. Safety factor 3
Which is the smallest bunch size that can be used?+_Sr/Fm =0,16Gr=0,71ơ=800·0.8=640 MPaAs=?Fmax= As·ơ·GrFs=ơs·AsFFm= Fs· GFSF =SF / FFm · FFm Fpreload =Fload / SF → Fload /3Fpreload per screw =Fload / SF → Fload /4As=Fpreload per screw /ơ·Gr → As= Fpreload per screw / 640· 0.71
The correct answer should be M12 with As=84.3mm²
...
TELEGRAM
ديسمبر
۲۰۲ عند الساعة
سوأل الوجه البينة
۲۷
- Find the equivalent resistance between
A and B
bellows
For the circuit shown.
• All resistances in Ohms.
2
C
2
A
4
B
www
4
E
5
www
ww
8
bar K.
Dr. Abduljabbo
Hammade
27/12/2024
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.