Car rental. A car rental agency has facilities at both JFK and LaGuardia airports. Assume that a car rented at either airport must be returned to one or the other airport. If a car is rented at LaGuardia, the probability that it will be returned there is .8 ; if a car is rented at JFK. the probability that it will be returned there is .7 . Assume that the company rents all its 100 cars each day and that each car is rented (and returned) only once a day. If we start with 50 cars at each airport, then (A) What is the expected distribution on the next day? (B) What is the expected distribution 2 days later?
Car rental. A car rental agency has facilities at both JFK and LaGuardia airports. Assume that a car rented at either airport must be returned to one or the other airport. If a car is rented at LaGuardia, the probability that it will be returned there is .8 ; if a car is rented at JFK. the probability that it will be returned there is .7 . Assume that the company rents all its 100 cars each day and that each car is rented (and returned) only once a day. If we start with 50 cars at each airport, then (A) What is the expected distribution on the next day? (B) What is the expected distribution 2 days later?
Solution Summary: The author calculates the expected distribution on the next day, if a car rental agency has facilities at both JFK and LaGuardia airports.
Car rental. A car rental agency has facilities at both JFK and LaGuardia airports. Assume that a car rented at either airport must be returned to one or the other airport. If a car is rented at LaGuardia, the probability that it will be returned there is
.8
; if a car is rented at JFK. the probability that it will be returned there is
.7
. Assume that the company rents all its
100
cars each day and that each car is rented (and returned) only once a day. If we start with
50
cars at each airport, then
(A) What is the expected distribution on the next day?
(B) What is the expected distribution
2
days later?
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Q1) Classify the following statements as a true or false statements
a. Any ring with identity is a finitely generated right R module.-
b. An ideal 22 is small ideal in Z
c. A nontrivial direct summand of a module cannot be large or small submodule
d. The sum of a finite family of small submodules of a module M is small in M
A module M 0 is called directly indecomposable if and only if 0 and M are
the only direct summands of M
f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct-
summand in M
& Z₂ contains no minimal submodules
h. Qz is a finitely generated module
i. Every divisible Z-module is injective
j. Every free module is a projective module
Q4) Give an example and explain your claim in each case
a) A module M which has two composition senes 7
b) A free subset of a modale
c) A free module
24
d) A module contains a direct summand submodule 7,
e) A short exact sequence of modules 74.
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
Chapter 9 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License