Concept explainers
Using a Sequence Consider the sequence
(a) Show that
(b) Prove that
(c) Find
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Calculus (MindTap Course List)
- The Fibonacci sequence fn=1,1,2,3,5,8,13,21,... is defined recursively by f1=1,f2=1,fn+2=fn+1+fn for n=1,2,3,... a. Prove f1+f2+...+fn=fn+21 for all positive integers n. b. Use complete induction to prove that fn2n for all positive integers n. c. Use complete induction to prove that fn is given by the explicit formula fn=(1+5)n(15)n2n5 (This equation is known as Binet's formula, named after the 19th-century French mathematician Jacques Binet.)arrow_forwardSum of a Finite Arithmetic Sequence Find the sum of the integers from 30 to 80.arrow_forwardFibonaccis RabbitsFibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair that becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the n th month? Show that the answer if Fn, where Fn is the n th term of the Fibonacci sequence.arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning