Determine wheter the infinite geometric series coverges or diverges. If it covereges, find its sum
![15) 2 +6 + 8 + 10 + ...](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9e829bb0-b5d1-4d5b-9d17-45a93922f760%2F5e16a651-aec5-4b0a-b3d4-23f67447ee45%2Fddvyq6m.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Infinite geometric series:
Condition 1:
An infinite geometric series converges if and only if ''the value of common ratio is less than 1'' ( r <1). In this case, sum of the series is equal to a1/(1-r) where a1 is the first term and r is the common ratio.
Condition 2:
An infinite geometric series diverges if the value of common ratio is more than 1 ( r >1). In this case, sum of the series
has no limit and the sum approaches infinity.
Infinite arithmetic series:
The sum of an infinite arithmetic series is either +∞, if d=positive, or - ∞, if d=negative where d is common difference.
Because the sum of infinite arithmetic series approaches infinity, therefore the infinite arithmetic series diverges.
Any other series:
If the sum of any series approaches infinity then the series diverges.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)