Follow these steps to evaluate a finite sequence defined by an explicit formula. Using a Tl-84, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER] • In the line headed “Expr:” type in the explicit formula, using the [ X , T , θ , n ] button for n • In the line headed ‘Variable” type In the variable used on the previous step. • In the line headed ‘start:” key in the value of n that begins the sequence. • In the line headed “end:’ key in the value of n that ends the sequence. • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. Using a TI-83, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose “seq(“ from the dropdown list. Press [ENTER]. • Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item. • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary. 65. List the first four terms of the sequence. a n = 5.7 n + 0.275 ( n − 1 )
Follow these steps to evaluate a finite sequence defined by an explicit formula. Using a Tl-84, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER] • In the line headed “Expr:” type in the explicit formula, using the [ X , T , θ , n ] button for n • In the line headed ‘Variable” type In the variable used on the previous step. • In the line headed ‘start:” key in the value of n that begins the sequence. • In the line headed “end:’ key in the value of n that ends the sequence. • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. Using a TI-83, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose “seq(“ from the dropdown list. Press [ENTER]. • Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item. • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary. 65. List the first four terms of the sequence. a n = 5.7 n + 0.275 ( n − 1 )
Follow these steps to evaluate a finite sequence defined by an explicit formula.
Using a Tl-84, do the following.
• In the home screen, press [2ND] LIST.
• Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER]
• In the line headed “Expr:” type in the explicit formula, using the
[
X
,
T
,
θ
,
n
]
button for n • In the line headed ‘Variable” type In the variable used on the previous step.
• In the line headed ‘start:” key in the value of n that begins the sequence.
• In the line headed “end:’ key in the value of n that ends the sequence.
• Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms.
Using a TI-83, do the following.
• In the home screen, press [2ND] LIST.
• Scroll over to OPS and choose “seq(“ from the dropdown list. Press [ENTER].
• Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item.
• Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms.
For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary.
A research study in the year 2009 found that there were 2760 coyotes
in a given region. The coyote population declined at a rate of 5.8%
each year.
How many fewer coyotes were there in 2024 than in 2015?
Explain in at least one sentence how you solved the problem. Show
your work. Round your answer to the nearest whole number.
Answer the following questions related to the following matrix
A =
3
³).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.