Concept explainers
Prove that the sequence
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
EBK CALCULUS EARLY TRANSCENDENTALS SING
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)
College Algebra (7th Edition)
A First Course in Probability (10th Edition)
- Given the recursively defined sequence a1=0,a2=30, and an=8an115an2, use complete induction to prove that an=53n35n for all positive integers n.arrow_forwardCalculate the first eight terms of the sequences an=(n+2)!(n1)! and bn=n3+3n32n , and then make a conjecture about the relationship between these two sequences.arrow_forwardThe Fibonacci sequence fn=1,1,2,3,5,8,13,21,... is defined recursively by f1=1,f2=1,fn+2=fn+1+fn for n=1,2,3,... a. Prove f1+f2+...+fn=fn+21 for all positive integers n. b. Use complete induction to prove that fn2n for all positive integers n. c. Use complete induction to prove that fn is given by the explicit formula fn=(1+5)n(15)n2n5 (This equation is known as Binet's formula, named after the 19th-century French mathematician Jacques Binet.)arrow_forward
- Use explicit formulas to give two examples of geometric sequences whose 7thterms are 1024.arrow_forwardFollow these steps to evaluate a finite sequence defined by an explicit formula. Using a Tl-84, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER] • In the line headed “Expr:” type in the explicit formula, using the [X,T,,n] button for n• In the line headed ‘Variable” type In the variable used on the previous step. • In the line headed ‘start:” key in the value of n that begins the sequence. • In the line headed “end:’ key in the value ofnthat ends the sequence. • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. Using a TI-83, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose “seq(“from the dropdown list. Press [ENTER]. • Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item. • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary. 62. List the first five terms of the sequence. an=289n+53arrow_forwardFollow these steps to evaluate a finite sequence defined by an explicit formula. Using a Tl-84, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER] • In the line headed “Expr:” type in the explicit formula, using the [X,T,,n] button for n • In the line headed ‘Variable” type In the variable used on the previous step. • In the line headed ‘start:” key in the value of n that begins the sequence. • In the line headed “end:’ key in the value of n that ends the sequence. • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. Using a TI-83, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose “seq(“ from the dropdown list. Press [ENTER]. • Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item. • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary. 66. List the first six terms of the sequence an=n!narrow_forward
- Follow these steps to evaluate a finite sequence defined by an explicit formula. Using a Tl-84, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose ‘seq(” from the dropdown list. Press [ENTER] • In the line headed “Expr:” type in the explicit formula, using the [X,T,,n] button for n• In the line headed ‘Variable” type In the variable used on the previous step. • In the line headed ‘start:” key in the value of n that begins the sequence. • In the line headed “end:’ key in the value of nthat ends the sequence. • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. Using a TI-83, do the following. • In the home screen, press [2ND] LIST. • Scroll over to OPS and choose “seq(“ from the dropdown list. Press [ENTER]. • Enter the items in the order “Expr’, Variable’, ‘start”. end separated by commas. See the instructions above for the description of each item. • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms. For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary. 63. List the first six terms of the sequence. an=n33.5n2+4.1n1.52.4narrow_forwardConsider the sequence defined by an=68n. Is an=421 a term in the sequence? Verify the result.arrow_forwardFollow these steps to evaluate a sequence defined recursively using a graphing calculator: • On the home screen, key in the value for the initial term a1 and press [ENTER]. • Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND] ASS for the previous term an1 .. Press [ENTER]. • Continue pressing [ENTER] to calculate the values for each successive term. For the following exercises, use the steps above to find the indicated term or terms for the sequence. 58. Find the 15th term of the sequence a1=625,an=0.8an1+18arrow_forward
- Follow these steps to evaluate a sequence defined recursively using a graphing calculator: • On the home screen, key in the value for the initial term a1 and press [ENTER]. • Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND]ASS for the previous term an1 .. Press [ENTER]. • Continue pressing [ENTER] to calculate the values for each successive term. For the following exercises, use the steps above to find the indicated term or terms for the sequence. 57. Find the first terms of the sequence a1=87111 , an=43an1+1237 . Use the > Frac feature to give fractional results.arrow_forwardFollow these steps to evaluate a sequence defined recursively using a graphing calculator: • On the home screen, key in the value for the initial term a1 and press [ENTER]. • Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND] ASS for the previous term an1 .. Press [ENTER]. • Continue pressing [ENTER] to calculate the values for each successive term. For the following exercises, use the steps above to find the indicated term or terms for the sequence. 61. Find the tenth term of the sequence a1=2,an=nan1arrow_forwardFollow these steps to evaluate a sequence defined recursively using a graphing calculator: •On the home screen, key in the value for the initial term a1 and press [ENTER]. • Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND] ASS for the previous term an1 .. Press [ENTER]. • Continue pressing [ENTER] to calculate the values for each successive term. For the following exercises, use the steps above to find the indicated term or terms for the sequence. 60. Find the first ten terms of the sequence a1=8,an=(an1+1)!an1!arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,