University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem Q9.14DQ
A hollow spherical shell of radius R that is rotating about an axis through its center has rotational kinetic energy K. If you want to modify this sphere so that it has three times as much kinetic energy at the same angular speed while keeping the same mass, what should be its radius in terms of R?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
University Physics (14th Edition)
Ch. 9 - Which of the following formulas is valid if the...Ch. 9 - A diatomic molecule can be modeled as two point...Ch. 9 - What is the difference between tangential and...Ch. 9 - In Fig. Q9.4, all points on the chain have the...Ch. 9 - In Fig. Q9.4, how are the radial accelerations of...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - What is the purpose of the spin cycle of a washing...Ch. 9 - You are designing a flywheel to store kinetic...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - To maximize the moment of inertia of a flywheel...
Ch. 9 - How might you determine experimentally the moment...Ch. 9 - A cylindrical body has mass M and radius R. Can...Ch. 9 - Describe how you could use part (b) of Table 9.2...Ch. 9 - A hollow spherical shell of radius R that is...Ch. 9 - For the equations for I given in parts (a) and (b)...Ch. 9 - In part (d) of Table 9.2, the thickness of the...Ch. 9 - Two identical balls, A and B, are each attached to...Ch. 9 - An elaborate pulley consists of four identical...Ch. 9 - You can use any angular measureradians, degrees,...Ch. 9 - When calculating the moment of inertia of an...Ch. 9 - A wheel is rotating about an axis perpendicular to...Ch. 9 - Estimate your own moment of inertia about a...Ch. 9 - (a) What angle in radians is subtended by an are...Ch. 9 - An airplane propeller is rotating at 1900 rpm...Ch. 9 - CP CALC The angular velocity of a flywheel obeys...Ch. 9 - CALC A fan blade rotates with angular velocity...Ch. 9 - CALC A child is pushing a merry-go-round. The...Ch. 9 - CALC At t = 0 the current to a dc electric motor...Ch. 9 - CALC The angle through which a disk drive turns...Ch. 9 - A wheel is rotating about an axis that is in the...Ch. 9 - A bicycle wheel has an initial angular velocity of...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - The rotating blade of a blender turns with...Ch. 9 - (a) Derive Eq. (9.12) by combining Eqs. (9.7) and...Ch. 9 - A turntable rotates with a constant 2.25 rad/s2...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A high-speed flywheel in a motor is spinning at...Ch. 9 - At t = 0 a grinding wheel has an angular velocity...Ch. 9 - A safety device brings the blade of a power mower...Ch. 9 - In a charming 19th-century hotel, an old-style...Ch. 9 - Using Appendix F, along with the fact that the...Ch. 9 - Compact Disc. A compact disc (CD) stores music in...Ch. 9 - A wheel of diameter 40.0 cm starts from rest and...Ch. 9 - You are to design a rotating cylindrical axle to...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - An electric turntable 0.750 m in diameter is...Ch. 9 - Centrifuge. An advertisement claims that a...Ch. 9 - At t = 3.00 s a point on the rim of a...Ch. 9 - Electric Drill. According to the shop manual, when...Ch. 9 - Four small spheres, each of which you can regard...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - A uniform bar has two small balls glued to its...Ch. 9 - You are a project manager for a manufacturing...Ch. 9 - A wagon wheel is constructed as shown in Fig....Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - A compound disk of outside diameter 140.0 cm is...Ch. 9 - A wheel is turning about an axis through its...Ch. 9 - A uniform sphere with mass 28.0 kg and radius...Ch. 9 - A hollow spherical shell has mass 8.20 kg and...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - Energy is to be stored in a 70.0-kg flywheel in...Ch. 9 - A light, flexible rope is wrapped several times...Ch. 9 - A frictionless pulley has the shape of a uniform...Ch. 9 - A bucket of mass m is tied to a massless cable...Ch. 9 - CP A thin, light wire is wrapped around the rim of...Ch. 9 - A uniform 2.00-m ladder of mass 9.00 kg is leaning...Ch. 9 - How I Scales. If we multiply all the design...Ch. 9 - Find the moment of inertia of a hoop (a...Ch. 9 - About what axis will a uniform, balsa-wood sphere...Ch. 9 - (a) For the thin rectangular plate shown in part...Ch. 9 - A thin. rectangular sheet of metal has mass M and...Ch. 9 - A thin uniform rod of mass M and length L is bent...Ch. 9 - CALC Use Eq. (9.20) to calculate the moment of...Ch. 9 - CALC Use Eq. (9.20) to calculate the moment of...Ch. 9 - CALC A slender rod with length L has a mass per...Ch. 9 - CALC A uniform disk with radius R = 0.400 m and...Ch. 9 - CP A circular saw blade with radius 0.120 m starts...Ch. 9 - CALC A roller in a printing press turns through an...Ch. 9 - CP CALC A disk of radius 25.0 cm is free to turn...Ch. 9 - You are designing a rotating metal flywheel that...Ch. 9 - You must design a device for shooting a small...Ch. 9 - Engineers are designing a system by which a...Ch. 9 - A vacuum cleaner bell is looped over a shaft of...Ch. 9 - The motor of a table saw is rotating at 3450...Ch. 9 - While riding a multispeed bicycle, the rider can...Ch. 9 - A computer disk drive is turned on starting from...Ch. 9 - It has been argued that power plants should make...Ch. 9 - A uniform disk has radius R0 and mass M0. Its...Ch. 9 - Measuring I. As an intern at an engineering firm,...Ch. 9 - A uniform, solid disk with mass m and radius R is...Ch. 9 - CP A meter stick with a mass of 0.180 kg is...Ch. 9 - A physics student of mass 43.0 kg is standing at...Ch. 9 - A slender rod is 80.0 cm long and has mass 0.120...Ch. 9 - Exactly one turn of a flexible rope with mass m is...Ch. 9 - The pulley in Fig. P9.75 has radius R and a moment...Ch. 9 - The pulley in Fig. P9.76 has radius 0.160 m and...Ch. 9 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 9 - A thin, light wire is wrapped around the rim of a...Ch. 9 - In the system shown in Fig. 9.17, a 12.0-kg mass...Ch. 9 - In Fig. P9.80, the cylinder and pulley turn...Ch. 9 - BIO The Kinetic Energy of Walking. If a person of...Ch. 9 - BIO The Kinetic Energy of Running. Using Problem...Ch. 9 - 810 Human Rotational Energy. A dancer is spinning...Ch. 9 - A thin, uniform rod is bent into a square of side...Ch. 9 - CALC A sphere with radius R = 0.200 m has density ...Ch. 9 - CALC Neutron Stars and Supernova Remnants. The...Ch. 9 - DATA A technician is testing a...Ch. 9 - DATA You are analyzing the motion of a large...Ch. 9 - DATA You are rebuilding a 1965 Chevrolet. To...Ch. 9 - CALC Calculate the moment of inertia of a uniform...Ch. 9 - CALC On a compact disc (CD), music is coded in a...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL. American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - THE SPINNING EEL.American eels (Anguilla rostrata)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Find the refractive index of a material for which the polarizing angle in air is 62.
Essential University Physics: Volume 2 (3rd Edition)
52. || An archer shoots an arrow at an apple that is sitting on a post. The arrow and the apple are initially a...
College Physics (10th Edition)
Medical ultrasound uses frequencies around 107 Hz, far above the range of the human ear. In what sense are thes...
Essential University Physics: Volume 1 (3rd Edition)
Which Moon position (F–l) best corresponds with the Moon phase shown in the upper-right corner of Figure 2?
Ent...
Lecture- Tutorials for Introductory Astronomy
Choose the best answer to each of the following. Explain your reasoning. The leading hypothesis for the origin ...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- Two spheres, one hollow and one solid, are rotating with the same angular speed around an axis through their centers. Both spheres have the same mass and radius. Which sphere, if either, has the higher rotational kinetic energy? (a) The hollow I sphere, (b) The solid sphere, (c) They have the same kinetic energy.arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.62. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. What If? (d) Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Would its speed then be higher, lower, or the same at the top of the loop? (e) Explain your answer to part (d). Figure P10.62arrow_forwardThe puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forward
- Big Ben, the Parliament tower clock in London, has an hour hand 2.70 m long with a mass of 60.0 kg and a minute hand 4.50 m long with a mass of 100 kg (Fig. P10.17). Calculate the total rotational kinetic energy of the two hands about the axis of rotation. (You may model the hands as long, thin rods rotated about one end. Assume the hour and minute hands are rotating at a constant rate of one revolution per 12 hours and 60 minutes, respectively.) Figure P10.17 Problems 17, 49, and 66.arrow_forwardA thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardA solid, uniform disk of radius 0.250 m and mass 55.0 kg rolls down a ramp of length 4.50 m that makes an angle of 15.0 with the horizontal. The disk starts from rest from the top of the ramp. Find (a) the speed of the disks center of mass when it reaches the bottom of the ramp and (b) the angular speed of the disk at the bottom of the ramp.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License