CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ ( t ) = (250 rad/s) t − (20.0 rad/s 2 ) t 2 − (1.50 rad/s 3 ) t 3 . (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ ( t ) = (250 rad/s) t − (20.0 rad/s 2 ) t 2 − (1.50 rad/s 3 ) t 3 . (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ(t) = (250 rad/s)t − (20.0 rad/s2)t2 − (1.50 rad/s3) t3. (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.