A thin, light wire is wrapped around the rim of a wheel as shown in Fig. E9.45. The wheel rotates about a stationary horizontal axle that passes through the center of the wheel. The wheel has radius 0.180 m and moment of inertia for rotation about the axle of I = 0.480 kg · m 2 . A small block with mass 0.340 kg is suspended from the free end of the wire. When the system is released from rest, the block descends with constant acceleration. The bearings in the wheel at the axle are rusty, so friction there does −9.00 J of work as the block descends 3.00 m. What is the magnitude of the angular velocity of the wheel after the block has descended 3.00 m?
A thin, light wire is wrapped around the rim of a wheel as shown in Fig. E9.45. The wheel rotates about a stationary horizontal axle that passes through the center of the wheel. The wheel has radius 0.180 m and moment of inertia for rotation about the axle of I = 0.480 kg · m 2 . A small block with mass 0.340 kg is suspended from the free end of the wire. When the system is released from rest, the block descends with constant acceleration. The bearings in the wheel at the axle are rusty, so friction there does −9.00 J of work as the block descends 3.00 m. What is the magnitude of the angular velocity of the wheel after the block has descended 3.00 m?
A thin, light wire is wrapped around the rim of a wheel as shown in Fig. E9.45. The wheel rotates about a stationary horizontal axle that passes through the center of the wheel. The wheel has radius 0.180 m and moment of inertia for rotation about the axle of I = 0.480 kg · m2. A small block with mass 0.340 kg is suspended from the free end of the wire. When the system is released from rest, the block descends with constant acceleration. The bearings in the wheel at the axle are rusty, so friction there does −9.00 J of work as the block descends 3.00 m. What is the magnitude of the angular velocity of the wheel after the block has descended 3.00 m?
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Please don't use Chatgpt will upvote and give handwritten solution
No chatgpt pls
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby.
A. First, if the rod was not there, what statement best describes the charge distribution of the ball?
1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball.
B. Now, when the rod is moved close to the ball, what happens to the charges on the ball?
1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.