EBK OM
EBK OM
6th Edition
ISBN: 9781305888210
Author: Collier
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9PA

(a)

Summary Introduction

Interpretation: The forecast for next quarter, using a four period moving averages needs to be calculated.

Concept Introduction: The moving average method takes the average of the recent number of observations in any time series. The average is taken based on the k number of previous observations.

(a)

Expert Solution
Check Mark

Explanation of Solution

B.

Following formula can be used to calculate the forecast values as per moving average method

  Ft+1= ( A t + A t1 + A t2 + A tk+1 )kwhere,Ft+1 = Forecasted Value for current periodAt = Actual Value for previous period

The forecast for next quarter using a four-period moving average is as follows:

    YearQuarterSalesForecast
    114
    122
    131
    145
    2163
    2243.5
    2344
    24144.75
    31107
    3238
    3357.75
    34168
    41128.5
    4299
    43710.5
    442211
    511812.5
    521014
    531314.25
    543515.75
    61Forecast19

  FNovember=A(5,1)+A(5,2)+A(5,3)+A(5,4)4=18+10+33+354=19

Therefore, the forecast for next quarter, using a four-period moving average is 19.

(b)

Summary Introduction

Interpretation: The good value of a for a single exponential smoothing model needs to be determined .

Concept Introduction: Single Exponential Smoothing is a method which computes the weighted average of previous sales data to forecast the future sales value.

(b)

Expert Solution
Check Mark

Explanation of Solution

Following formula can be used to calculate the forecasted values:

  Ft+1 = αAt+(1-α)Ftwhere,α = smoothing constantAt= Actual Sales of previous periodFt= Forecasted Sales of previous period

The Mean Square Error for various values of a is as follows:

At a = 0.1

       Forecast   
    YearQuarterSalesAlpha = 0.1ErrorSquared Error
    114   
    122424
    1313.82.87.84
    1453.521.482.1904
    2163.6682.335.438224
    2243.90120.10.00976144
    2343.911080.090.007906766
    24143.91997210.1101.6069645
    31104.92797485.0725.72543963
    3235.43517732.445.93008858
    3355.19165960.190.036733398
    34165.172493610.8117.2348942
    41126.25524435.7433.00221844
    4296.82971982.174.710115974
    4377.04674790.050.002185362
    44227.042073115223.739578
    51188.53786589.4689.53198432
    52109.48407920.520.266174285
    53139.53567133.4612.00157356
    54359.882104125.1630.9086924
    61 12.393894SUM1264.182935
        MSE66.53594394

At a = 0.2

       Forecast   
    YearQuarterSalesAlpha = 0.2ErrorSquared Error
    114   
    122424
    1313.62.66.76
    1453.081.923.6864
    2163.4642.546.431296
    2243.97120.030.00082944
    2343.976960.020.000530842
    24143.98156810100.3689797
    31105.98525444.0116.11818223
    3236.78820353.7914.35048591
    3356.03056281.031.062059718
    34165.824450310.2103.5418127
    41127.85956024.1417.14324172
    4298.68764820.310.097563671
    4378.75011851.753.062914867
    44228.400094813.6184.9574208
    511811.1200766.8847.33335619
    521012.4960612.56.230318954
    531311.99684911.006312832
    543512.19747922.8519.9549713
    61 16.757983SUM1036.106677
        MSE54.53193036

At a = 0.3

       Forecast   
    YearQuarterSalesAlpha = 0.3ErrorSquared Error
    114   
    122424
    1313.42.45.76
    1452.682.325.3824
    2163.3762.626.885376
    2244.16320.160.02663424
    2344.114240.110.013050778
    24144.0799689.9298.40703488
    31107.05597762.948.667267892
    3237.93918434.9424.39554175
    3356.4574291.462.12409936
    34166.02020039.9899.59640172
    41129.01414022.998.915358615
    4299.90989820.910.827914653
    4379.63692872.646.953393015
    44228.845850113.2173.0316597
    511812.7920955.2127.12227379
    521014.3544674.3518.96137891
    531313.0481270.050.002316168
    543513.03368922482.5188362
    61 19.623582SUM973.5909376
        MSE51.2416283

At a = 0.4

       Forecast   
    YearQuarterSalesAlpha = 0.4ErrorSquared Error
    114   
    122424
    1313.22.24.84
    1452.322.687.1824
    2163.3922.616.801664
    2244.43520.440.18939904
    2344.261120.260.068183654
    24144.1566729.8496.89110612
    31108.09400321.913.632823802
    3238.85640195.8634.29744345
    3356.51384121.512.291715033
    34165.908304710.1101.8423142
    41129.94498282.064.223095632
    42910.766991.773.12225256
    43710.0601943.069.364786175
    44228.836116313.2173.2878344
    511814.101673.915.19697856
    521015.6610025.6632.0469421
    531313.3966010.40.157292447
    543513.23796121.8473.5863558
    61 21.942776SUM973.0225869
        MSE51.2117151

At a = 0.5

       Forecast   
    YearQuarterSalesAlpha = 0.5ErrorSquared Error
    114   
    122424
    131324
    145239
    2163.52.56.25
    2244.750.750.5625
    2344.3750.380.140625
    24144.18759.8196.28515625
    31109.093750.910.821289063
    3239.5468756.5542.86157227
    3356.27343751.271.621643066
    34165.636718810.4107.3975983
    411210.8183591.181.396274567
    42911.409182.415.804146767
    43710.204593.210.26939607
    44228.602294913.4179.4985014
    511815.3011472.77.283805028
    521016.6505746.6544.23013094
    531313.3252870.330.105811545
    543513.16264321.8476.8701419
    61 24.081322SUM998.398592
        MSE52.54729432

At a = 0.6

       Forecast   
    YearQuarterSalesAlpha = 0.6ErrorSquared Error
    114   
    122424
    1312.81.83.24
    1451.723.2810.7584
    2163.6882.315.345344
    2245.07521.081.15605504
    2344.430080.430.184968806
    24144.1720329.8396.58895501
    311010.0688130.070.004735201
    32310.0275257.0349.38610931
    3355.811010.810.657737298
    34165.32440410.7113.9683495
    411211.7297620.270.073028789
    42911.8919052.898.363112465
    43710.1567623.169.965145423
    44228.262704713.7188.713281
    511816.5050821.492.234780134
    521017.4020337.454.79008896
    531312.9608130.040.001535613
    543512.98432522484.6899351
    61 26.19373SUM1034.121562
        MSE54.42745061

At a = 0.7

       Forecast   
    YearQuarterSalesAlpha = 0.7ErrorSquared Error
    114   
    122424
    1312.61.62.56
    1451.483.5212.3904
    2163.9442.064.227136
    2245.38321.381.91324224
    2344.414960.410.172191802
    24144.1244889.8897.52573726
    311011.0373461.041.076087554
    32310.3112047.3153.45370276
    3355.19336120.190.037388544
    34165.058008410.9119.7271812
    411212.7174030.720.514666355
    42912.2152213.2210.33764448
    4379.96456622.968.788652906
    44227.889369914.1199.1098827
    511817.7668110.230.054377128
    521017.9300437.9362.88558655
    531312.3790130.620.385624871
    543512.81370422.2492.2317348
    61 28.344111SUM1071.391237
        MSE56.38901248

At a = 0.8

       Forecast   
    YearQuarterSalesAlpha = 0.8ErrorSquared Error
    114   
    122424
    1312.41.41.96
    1451.283.7213.8384
    2164.2561.743.041536
    2245.65121.652.72646144
    2344.330240.330.109058458
    24144.0660489.9398.68340234
    311012.013212.014.053012894
    32310.4026427.454.7991074
    3354.48052840.520.26985076
    34164.896105711.1123.2964691
    411213.7792211.783.165627849
    42912.3558443.3611.26169048
    4379.67116882.677.135143001
    44227.534233814.5209.2583926
    511819.1068471.111.225109736
    521018.2213698.2267.590914
    531311.6442741.361.837993339
    543512.72885522.3496.0039097
    61 30.545771SUM1104.256079
        MSE58.11874101

At a = 0.9

       Forecast   
    YearQuarterSalesAlpha = 0.9ErrorSquared Error
    114   
    122424
    1312.21.21.44
    1451.123.8815.0544
    2164.6121.391.926544
    2245.86121.863.46406544
    2344.186120.190.034640654
    24144.0186129.9899.62810641
    311013.00186139.011170664
    32310.3001867.353.29271739
    3353.73001861.271.612852726
    34164.873001911.1123.8100876
    411214.88732.898.336502365
    42912.288733.2910.81574514
    4379.3288732.335.423649459
    44227.232887314.8218.0676175
    511820.5232892.526.366986015
    521018.2523298.2568.10093183
    531310.8252332.174.729611994
    543512.78252322.2493.6162714
    61 32.778252SUM1128.731901
        MSE59.40694213

After evaluating the MSE of all forecasting models above, The good value of a for a single exponential smoothing model is found at 0.4 as the MSE is the least for this model.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
m4h2#1
The following data are for calculator sales in units at an electronics store over the past nine weeks: Week Sales Week Sales 1 45 6. 53 2 50 7 59 3 44 59 4 51 9 64 5 57 Use trend projection with regression to forecast sales for weeks 10 - 13. What are the error measures (CFE, MSE, G. MAD, and MAPE) for this forecasting procedure? How about ? Obtain the trend projection with regression forecast for weeks 10 - 13. (Enter your responses rounded to two decimal places.) Period Forecast, F, 10 11 12 13
Happy Lodge Ski Resorts tries to forecast monthlyattendance. Th e management has noticed a direct relationshipbetween the average monthly temperature and attendance.(a) Given fi ve months of average monthly temperatures andcorresponding monthly attendance, compute a linearregression equation of the relationship between the two.If next month’s average temperature is forecast to be 45degrees, use your linear regression equation to develop aforecast. (b) Compute a correlation coefficient for the data anddetermine the strength of the linear relationship betweenaverage temperature and attendance. How good apredictor is temperature for attendance?
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Practical Management Science
    Operations Management
    ISBN:9781337406659
    Author:WINSTON, Wayne L.
    Publisher:Cengage,
    Text book image
    Marketing
    Marketing
    ISBN:9780357033791
    Author:Pride, William M
    Publisher:South Western Educational Publishing
    Text book image
    Contemporary Marketing
    Marketing
    ISBN:9780357033777
    Author:Louis E. Boone, David L. Kurtz
    Publisher:Cengage Learning
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Text book image
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Text book image
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License