EBK OM
EBK OM
6th Edition
ISBN: 9781305888210
Author: Collier
Publisher: YUZU
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 7PA
Summary Introduction

Interpretation: The best smoothing constant needs to be determined by evaluating the MSE .

Concept Introduction: Single Exponential Smoothing is a method which computes the weighted average of previous sales data to forecast the future sales value.

Expert Solution & Answer
Check Mark

Explanation of Solution

Following formula can be used to calculate the forecasted values:

  Ft+1 = αAt+(1-α)Ftwhere,α = smoothing constantAt= Actual Sales of previous periodFt= Forecasted Sales of previous period

The Mean Square Error for various values of a is as follows:

At a = 0.1

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455161415925281
    413861598.1212.144986.41
    512091576.89367.89135343.0521
    613481540.101192.10136902.7942
    715811520.890960.10913613.103903
    813321526.90181194.901837986.71554
    912451507.411629262.411668859.86303
    1015211481.17046639.82951586.38907
    1114211485.15341964.153424115.661232
    1215021478.73807823.2619541.1159916
    1316561481.06427174.39630413.96482
    1416141498.557843115.44213326.85536
    1513321510.102059178.102131720.34325
    16 1492.291853SUM442777.2685
       MSE34059.79

At a = 0.2

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455160515022500
    413861575212.144986.41
    512091537.2367.89135343.0521
    613481471.56123.5615267.0736
    715811446.848134.15217996.7591
    813321473.6784141.678420072.76903
    912451445.34272200.342740137.20546
    1015211405.27417639.82951586.38907
    1114211428.4193417.41934155.04661791
    1215021426.93547323.2619541.1159916
    1316561441.948378174.39630413.96482
    1416141484.758702115.44213326.85536
    1513321510.606962178.60731900.44687
    16 1474.88557SUM382227.088
       MSE29402.08

At a = 0.3

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455159614119881
    413861553.7212.144986.41
    512091503.39367.89135343.0521
    613481415.07367.0734498.787329
    715811394.9511186.048934614.19319
    813321450.76577118.765814105.30812
    912451415.136039170.13628946.27177
    1015211364.09522739.82951586.38907
    1114211411.1666599.8333496.69457556
    1215021414.11666123.2619541.1159916
    1316561440.481663174.39630413.96482
    1416141505.137164115.44213326.85536
    1513321537.796015205.79642351.99973
    16 1476.05721SUM378792.0421
       MSE29137.84

At a = 0.4

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455158713217424
    413861534.2212.144986.41
    512091474.92367.89135343.0521
    613481368.55220.552422.384704
    715811360.3312220.668848694.71929
    813321448.59872116.598713595.26151
    912451401.959232156.959224636.20051
    1015211339.17553939.82951586.38907
    1114211411.9053249.8333496.69457556
    1215021415.54319423.2619541.1159916
    1316561450.125916174.39630413.96482
    1416141532.47555115.44213326.85536
    1513321565.08533233.085354328.77103
    16 1471.851198SUM393495.819
       MSE30268.909

At a = 0.5

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455157812315129
    413861516.5212.144986.41
    512091451.25367.89135343.0521
    613481330.12517.875319.515625
    715811339.0625241.937558533.75391
    813321460.03125128.031316392.00098
    912451396.015625151.015622805.71899
    1015211320.50781339.82951586.38907
    1114211420.7539069.8333496.69457556
    1215021420.87695323.2619541.1159916
    1316561461.438477174.39630413.96482
    1416141558.719238115.44213326.85536
    1513321586.359619254.359664698.81585
    16 1459.17981SUM412273.2873
       MSE31713.329

At a = 0.6

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455156911412996
    413861500.6212.144986.41
    512091431.84367.89135343.0521
    613481298.13617.875319.515625
    715811328.0544252.945663981.47656
    813321479.82176147.821821851.27273
    912451391.128704146.128721353.59813
    1015211303.45148239.82951586.38907
    1114211433.9805939.8333496.69457556
    1215021426.19223723.2619541.1159916
    1316561471.676895174.39630413.96482
    1416141582.270758115.44213326.85536
    1513321601.308303269.308372526.96216
    16 1439.723321SUM427423.3071
       MSE32878.71

At a = 0.7

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    31455156010511025
    413861486.5212.144986.41
    512091416.15367.89135343.0521
    613481271.14517.875319.515625
    715811324.9435256.056565564.93119
    813321504.18305172.183129647.00271
    912451383.654915138.654919225.18545
    1015211286.59647539.82951586.38907
    1114211450.6789429.8333496.69457556
    1215021429.90368323.2619541.1159916
    1316561480.371105174.39630413.96482
    1416141603.311331115.44213326.85536
    1513321610.793399278.793477725.75957
    16 1415.63802SUM437901.8765
       MSE33684.75

At a = 0.8

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    314551551969216
    413861474.2212.144986.41
    512091403.64367.89135343.0521
    613481247.92817.875319.515625
    715811327.9856253.014464016.28661
    813321530.39712198.397139361.41722
    912451371.679424126.679416047.67646
    1015211270.33588539.82951586.38907
    1114211470.8671779.8333496.69457556
    1215021430.97343523.2619541.1159916
    1316561487.794687174.39630413.96482
    1416141622.358937115.44213326.85536
    1513321615.671787283.671880469.68301
    16 1388.734357SUM443825.0609
       MSE34140.38

At a = 0.9

    PeriodObservationForecastErrorSquared Error
    116231623  
    215331623908100
    314551542877569
    413861463.7212.144986.41
    512091393.77367.89135343.0521
    613481227.47717.875319.515625
    715811335.9477245.052360050.62974
    813321556.49477224.494850397.90176
    912451354.449477109.449511979.18802
    1015211255.94494839.82951586.38907
    1114211494.4944959.8333496.69457556
    1215021428.34944923.2619541.1159916
    1316561494.634945174.39630413.96482
    1416141639.863494115.44213326.85536
    1513321616.586349284.586380989.39029
    16 1360.458635SUM445700.1073
       MSE34284.623

After evaluating the MSE of all forecasting models above, the best single exponential smoothing model is found at a = 0.3 as the MSE is the least for this model.

After comparing the MSEs of Exponential smoothing method performed in this question and moving average method in previous problem, The moving average method seems better option based on the given data.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the difference between adjusted exponential smoothing and exponential smoothing?
The following gives the number of accidents that occurred on Florida State Highway 101 during the last 4​ months:      Jan    Feb    Mar    AprMonth    1    2    3    4Number of Accidents    25    40    60    105 Using the least-squares regression method, the trend equation for forecasting is ​(round your responses to two decimal places)​: y = ? + ?x
Distinguish between a moving average model and an exponential smoothing model.
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Marketing
    Marketing
    ISBN:9780357033791
    Author:Pride, William M
    Publisher:South Western Educational Publishing
    Text book image
    Contemporary Marketing
    Marketing
    ISBN:9780357033777
    Author:Louis E. Boone, David L. Kurtz
    Publisher:Cengage Learning
    Text book image
    Practical Management Science
    Operations Management
    ISBN:9781337406659
    Author:WINSTON, Wayne L.
    Publisher:Cengage,
Text book image
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Text book image
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Forecasting 2: Forecasting Types & Qualitative methods; Author: Adapala Academy & IES GS for Exams;https://www.youtube.com/watch?v=npWni9K6Z_g;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License