a.
To determine:
The direction of equilibrium during high concentrations of oxygen in binding of hemoglobin and oxygen.
Introduction:
In a reversible reaction, the difference is energy is very less between reactants and products. Products formed from the collision of reactants can again dissociate to form reactants, that is, reaction is favorable in both the directions. The reactions of such type are said to be in equilibrium when the rate of forward reaction becomes equal to the rate of backward reaction.
b.
To determine:
The direction of equilibrium when the concentration of hydrogen ions is high in binding of hemoglobin and oxygen.
Introduction:
In a reversible reaction, the difference is energy is very less between reactants and products. Products formed from the collision of reactants can again dissociate to form reactants, that is, reaction is favorable in both the directions. The reactions of such type are said to be in equilibrium when the rate of forward reaction becomes equal to the rate of backward reaction.
c.
To determine:
The direction of equilibrium when concentration of carbon dioxide is built up in the bloodstream.
Introduction:
In a reversible reaction, the difference is energy is very less between reactants and products. Products formed from the collision of reactants can again dissociate to form reactants, that is, reaction is favorable in both the directions. The reactions of such type are said to be in equilibrium when the rate of forward reaction becomes equal to the rate of backward reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
EBK LABORATORY MANUAL FOR GENERAL, ORGA
- What will the enolate for this be using LDA, THF, and cold temperatures? What will it be using NaOEt at rt?arrow_forwardHelp me solve this problem.arrow_forwardDraw a mechanism for the following synthetic transformation including reagents and any isolable intermediates throughout the process. Please clearly indicate bond cleavage/formation using curly arrows. MeO2Carrow_forward
- CHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forwardCan anyone help me solve this step by step. Thank you in advaarrow_forwardPlease draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning



