Interpretation:
Successive three radioactive decay products starting from 22589 Ac radionuclide by alpha-emission should be determined.
Concept Introduction:
Radioactive decay is a process of converting a less stable radionuclide to a more stable nuclei by loss of energy. This can be achieved by the loss of gain of elementary particles such as alpha, beta or positron particles. Alpha particles are nothing but a Helium nuclei (42 He). When a nucleus undergoes an alpha emission process, which is a type of elementary radioactive particle, the resulting product nuclei will have an

Answer to Problem 9.76P
Successive three radioactive decay products starting from 22589 Ac radionuclide by alpha-emission are:
Explanation of Solution
A radioactive element may undergo radioactive decay by loss of an elementary particle such as an alpha particle. Alpha particle (42 He) has a mass of 4 units and atomic number of 2 units, so the resulting product nuclei will have an atomic mass 4 unit lower and atomic number of 2 unit lower.
Actinium is represented in short form as Ac.
Francium is represented in short form as Fr.
Astatine is represented in short form as At.
Bismuth is represented in short form as Bi.
Where,
Ac (Actinium) has an atomic mass of 225 and atomic number of 89. When it undergoes a radioactive decay by alpha emission (42 He), the resulting product Fr (Francium) has an atomic mass of 221 (lower by 4 units) and atomic number of 87 (lower by 2 units). Further, when Fr (Francium) undergoes a radioactive decay by alpha emission (42 He), the resulting product At (Astatine) has an atomic mass of 217 (lower by 4 units) and atomic number of 85 (lower by 2 units). In the third successive decay process, when At (Astatine) undergoes a radioactive decay by alpha emission (42 He), the resulting product Bi (Bismuth) has an atomic mass of 213 (lower by 4 units) and atomic number of 83 (lower by 2 units).
22589 Ac undergoes a series of alpha decay to produce daughter nuclei. The successive decay equations are as follows:
So it forms Francium-221 after first decay, Astatine-217 after second decay and Bismuth-213 after third decay.
Successive three radioactive decay products starting from 22589 Ac radionuclide by alpha-emission are:
Want to see more full solutions like this?
Chapter 9 Solutions
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




