CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ ( t ) = (250 rad/s) t − (20.0 rad/s 2 ) t 2 − (1.50 rad/s 3 ) t 3 . (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ ( t ) = (250 rad/s) t − (20.0 rad/s 2 ) t 2 − (1.50 rad/s 3 ) t 3 . (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
CALC At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ(t) = (250 rad/s)t − (20.0 rad/s2)t2 − (1.50 rad/s3) t3. (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity, (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
1.21 A postal employee drives a delivery truck along the route
shown in Fig. E1.21. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exercise
1.28 for a different approach.)
Figure E1.21
START
2.6 km
4.0 km
3.1 km
STOP
help because i am so lost and it should look something like the picture
Chapter 9 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.